Volume 40 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
SHANG Hailin, HU Qiushi, LI Tao, FU Hua, HU Haibo. One-dimensional theory for pressurization process in explosive crack burning[J]. Explosion And Shock Waves, 2020, 40(1): 011403. doi: 10.11883/bzycj-2019-0345
Citation: SHANG Hailin, HU Qiushi, LI Tao, FU Hua, HU Haibo. One-dimensional theory for pressurization process in explosive crack burning[J]. Explosion And Shock Waves, 2020, 40(1): 011403. doi: 10.11883/bzycj-2019-0345

One-dimensional theory for pressurization process in explosive crack burning

doi: 10.11883/bzycj-2019-0345
  • Received Date: 2019-09-06
  • Rev Recd Date: 2019-10-31
  • Available Online: 2019-10-25
  • Publish Date: 2020-01-01
  • The aim of this paper is to deep understand the pressurization behavior in evolution of crack burning, and promote the acknowledge level for transition mechanism of high intensity reaction in projectile fillings under accidental ignition. Based on qualitative analysis for pressure evolution in explosive crack burning, theoretical calculation is carried out for the pressurization process in crack burning of a HMX-based PBX (with a content of 95% for HMX). Simplified flow model for explosive burning products has been set up based on gas dynamic theory. With the hypothesis of one-dimensional isentropic flow, crack pressurization process has been predicted without regard to viscosity and friction resistance. The calculation result is qualitatively accord with experimental result in pressurization stage, providing a theoretical explanation for understanding the pressurization behavior in crack burning.
  • loading
  • [1]
    BERGHOUT H L, SON S F, ASAY B W. Convective burning in gaps of PBX9501 [J]. Proceedings of the Combustion Institute, 2000, 28(1): 911–917. DOI: 10.1016/S0082-0784(00)80297-0.
    [2]
    ASAY B W. Shock wave science and technology reference library, Vol. 5:non-shock initiation of explosives [M]. Heidelberg, Baden-Württemberg, Germany: Springer, 2010: 245−292. DOI: 10.1007/978-3-540-87953-4.
    [3]
    ASAY B W, SON S F, BDZIL J B. The role of gas permeation in convective burning [J]. International Journal of Multiphase Flow, 1996, 22: 923–952. DOI: 10.1016/0301-9322(96)00041-9.
    [4]
    胡海波, 郭应文, 傅华, 等. 炸药事故反应烈度转化的主控机制 [J]. 含能材料, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.

    HU H B, GUO Y W, FU H, et al. The dominant mechanism of reaction violence transition for explosive accident [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.
    [5]
    DICKSON P M, ASAY B W, HENSON B F, et al. Observation of the behaviour of confined PBX 9501 following a simulated cookoff ignition [C] // Proceedings of the 11th International Detonation Symposium. Snowmass, Colorado, US: Office of Naval Research, 1998: 606−611.
    [6]
    DICKSON P M, ASAY B W, HENSON B F, et al. Thermal cook-off response of confined PBX 9501 [J]. Proceedings of the Royal Society A, 2004, 460(2052): 3447–3455. DOI: 10.1098/rspa.2004.1348.
    [7]
    SMILOWITZ L, HENSON B F, ROMERO J J, et al. Proton radiography of a thermal explosion in PBX9501 [J]. AIP Conference Proceedings, 2007, 955: 1139–1142. DOI: 10.1063/1.2832919.
    [8]
    SMILOWITZ L, HENSON B F, ROMERO J J, et al. The evolution of solid density within a thermal explosion Ⅱ. Dynamic proton radiography of cracking and solid consumption by burning [J]. Journal of Applied Physics, 2012, 111: 103516. DOI: 10.1063/1.4711072.
    [9]
    SMILOWITZ L, HENSON B F, OSCHWALD D, et al. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography [J]. Applied Physics Letters, 2017, 111: 184103. DOI: 10.1063/1.5004424.
    [10]
    JACKSON S I, HILL L G, BERGHOUT H L, et al. Runaway reaction in a solid explosive containing a single crack [C] // Proceedings of the 13th International Detonation Symposium. Norfolk, VA, US: Office of Naval Research, 2006: 646−655.
    [11]
    BERGHOUT H L, SON S F, HILL L G, et al. Flame spread through cracks of PBX9501(a composite octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine-based explosive) [J]. Journal of Applied Physics, 2006, 99(11): 114901. DOI: 10.1063/1.2196219.
    [12]
    尚海林, 杨洁, 胡秋实, 等. 炸药裂缝中的对流燃烧现象实验研究 [J]. 兵工学报, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.

    SHANG H L, YANG J, HU Q S, et al. Experimental research on convective burning in explosive cracks [J]. Acta Armamentarii, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.
    [13]
    尚海林, 杨洁, 李涛, 等. 约束HMX基PBX炸药裂缝中燃烧演化实验 [J]. 含能材料, 2019, 27(12): 1056–1062. DOI: 10.11943/CJEM2019082.

    SHANG H L, YANG J, LI T, et al. Experimental study on burning evolution in confined explosive cracks [J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1056–1062. DOI: 10.11943/CJEM2019082.
    [14]
    JACKSON S I, HILL L G. Runaway reaction due to gas-dynamic choking in solid explosive containing a single crack [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2307–2313. DOI: 10.1016/j.proci.2008.05.089.
    [15]
    童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 2版. 北京: 高等教育出版社, 2012: 67−125.
    [16]
    MAIENSCHEIN J L, CHANDLER J B. Burn rates of pristine and degraded explosives at elevated temperatures and pressures [C] // Proceedings of the 11th International Detonation Symposium. Snowmass, Colorado, US: Office of Naval Research, 1998: 872−879.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (5857) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return