Volume 40 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
HU Haibo, FU Hua, LI Tao, SHANG Hailin, WEN Shanggang. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011401. doi: 10.11883/bzycj-2019-0346
Citation: HU Haibo, FU Hua, LI Tao, SHANG Hailin, WEN Shanggang. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011401. doi: 10.11883/bzycj-2019-0346

Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement

doi: 10.11883/bzycj-2019-0346
  • Received Date: 2019-09-04
  • Rev Recd Date: 2019-10-17
  • Publish Date: 2020-01-01
  • The progress in explosive safety studies related to experiment achievements with precise diagnostics and understanding of non-shock initiation of explosive phenomena in recent 20 years is reviewed. Some widespread misconceptions and misleading in non-shock initiation reaction behavior and corresponding process modeling is commented and suggestions for improvement are given. Recent experiments focused on the reaction propagation and violence evolution conducted by the author’s team in recent years are introduced and interpreted in detail as an illustration of the basic mechanism of non-shock initiation reaction. For low porosity explosive, the abnormal reaction behavior is dominated by the surface conductive burning and the convective flow of hot, high pressure gaseous reaction products through confinement slot and cracks in explosive bulk, which should be taken as the basic kinetics during the reaction propagation and reaction violence growth process. The evolution of reaction violence is unstable when the surface combustion is coupled with the dynamic evolution of crack network in explosive, but the utmost violence is usually limited by the mild conductive combustion rate of typical secondary explosive and confinement failure. Especially, the deflagration to detonation transition could hardly come true in low porosity explosive system with confinement of limited strength.
  • loading
  • [1]
    ASAY B. Shock wave science and technology reference library, Vol. 5: non-shock initiation of explosives [M]. Springer Science & Business Media, 2010: 1−14.
    [2]
    胡海波, 郭应文, 傅华, 等. 炸药事故反应烈度转化的主控机制 [J]. 含能材料, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.

    HU H B, GUO Y W, FU H, et al. The dominant mechanisms of reaction violence transition in explosive accidents [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 622–624. DOI: 10.11943/j.issn.1006-9941.2016.07.00X.
    [3]
    SHANG H L, YANG J, LI T, et al. Convective burning in confined explosive cracks of HMX-based PBX under non-shock initiation [C] // 16th International Detonation Symposium. Hawaii, 2018.
    [4]
    郭应文. 压装PBX反应烈度演化主导机制的实验研究[D]. 四川绵阳: 中国工程物理研究院, 2017.
    [5]
    HU H, GUO Y, LI T, et al. Reactive behavior of explosive billets in deflagration tube of varied confinements [C] // AIP Conference Proceedings. AIP Publishing, 2018, 1979(1): 150020.
    [6]
    HU H B, LI T, WEN S G, et al. Experimental study on the reaction evolution of pressed explosives in long thick wall cylinder confinement [C] // XXI Khariton’s Scientific Readings. Sarov, Russia, 2019.
    [7]
    LI T, GUO Y W, FU H, et al. Reaction cracks and pressurization of a pressed HMX-based PBX under high confinement [C] // 49th International Annual Conference of ICT, 2018.
    [8]
    LI T, HU H B, QIU T, et al. Experimentas of violent reactions of pressed high explosive in thick wall confinement [C] // XXI Khariton’s Scientific Readings, Sarov, Russia, 2019.
    [9]
    WEN Y, DAI X, HAN Y, et al. Reaction characteristic for various scale explosive under mild impact [J]. Journal of Energetic Materials, 2014, 32(S1): 41–50. DOI: 10.1080/07370652.2013.820808.
    [10]
    BAER M R, KIPP M E, SCHMITT R G, et al. Towards assessing the violence of reaction during cookoff of confined energetic materials [R]. Albuquerque, New Mexico, United States: Sandia National Laboratories, 1996.
    [11]
    NICHOLS III A L, COUCH R, MCCALLEN R C, et al. Modeling thermally driven energetic response of high explosives [C] // Proceedings of 11th International Detonation Symposium, 1998: 862−871.
    [12]
    REAUGH J E. HERMES: a model to describe deformation, burning, explosion, and detonation [R]. Livermore, California, United States: Lawrence Livermore National Laboratory, 2011.
    [13]
    陈朗, 王飞, 伍俊英, 等. 高密度压装炸药燃烧转爆轰研究 [J]. 含能材料, 2011, 19(6): 697–704. DOI: 10.3969/j.issn.1006-9941.2011.06.022.

    CHEN L, WANG F, WU J Y, et al. Investigation of the deflagration to detonation transition in pressed high density explosives [J]. Chinese Journal of Energetic Materials, 2011, 19(6): 697–704. DOI: 10.3969/j.issn.1006-9941.2011.06.022.
    [14]
    陈朗, 马欣. 炸药热安全性理论与分析方法[M]. 北京: 国防工业出版社, 2015.
    [15]
    薛鸿陆. 爆轰波基础知识 [J]. 爆炸与冲击, 1983, 3(1): 89–96.

    XUE H L. Fundamental knowledge of detonation waves [J]. Explosion and Shock Waves, 1983, 3(1): 89–96.
    [16]
    ZENIN A, FINJAKOV S. Characteristics of octogen and hexogen combustion: a comparison [C] // 36th International Annual Conference of ICT, 2006.
    [17]
    MAIENSCHEIN J L, KOERNER J G. Deflagration behavior of PBX 9501 at elevated temperature and pressure [R]. Livermore, California, United States: Lawrence Livermore National Laboratory, 2008.
    [18]
    孙承纬, 范宝春, 黄正平, 等. 爆轰术语: GJB 5720-2006[S]. 2006.
    [19]
    SMILOWITZ L, HENSON B F, ROMERO J J, et al. Thermal explosions: sub-sonic deflagration in PBX 9501 [R]. Los Alamos, New Mexico, United States: Los Alamos National Laboratory, 2011.
    [20]
    SMILOWITZ L B, HENSON B F. Temperature measurements during sub-sonic thermal explosions [R]. Los Alamos, New Mexico, United States: Los Alamos National Laboratory, 2012.
    [21]
    奥尔连科. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011.
    [22]
    BELYAEV A F, BOBOLEV V K, KOROTKOV A I, et al. Transition from deflagration to detonation in condensed phases [J]. Israel Program for Scientific Translations, Jerulasem, 1975.
    [23]
    БЕЛЬСКИЙ В М. Механизм инициирования и развития детонации в твердых гетерогенных ВВ [M]. Sarov, 2019.
    [24]
    ANDREEVSKIKH L A, VAKHMISTROV S A, PRONIN D A, et al. Convective combustion in the slot of an explosive charge [J]. Combustion, Explosion, and Shock Waves, 2015, 51(6): 659–663. DOI: 10.1134/S0010508215060064.
    [25]
    Hazard assessment tests for non-nuclear munitions: MIL-STD-2105D [S]. Indian Head, MD : Department of Defense, 2011.
    [26]
    JOHANSSON S R. Clear thinking requires clear concepts and terms (Explosion: disruption of a container. A mechanical term, not chemical) [C] // 含能材料与钝感弹药技术研讨会论文集. 成都, 2014.
    [27]
    KUO K K, KOVALCIN R L, ACKMAN S J. Convective burning in isolated solid propellant cracks [R]. Government-Industry Data Exchange Program, 1979.
    [28]
    BERNECKER R. The deflagration-to-detonation transition process for high-energy propellants-a review [J]. AIAA Journal, 1986, 24(1): 82–91. DOI: 10.2514/3.9226.
    [29]
    MAČEK A. Transition from deflagration to detonation in cast explosives [J]. The Journal of Chemical Physics, 1959, 31(1): 162–167. DOI: 10.1063/1.1730287.
    [30]
    TARVER C M, GOODALE T C, SHAW R, et al. Deflagration-to-detonation transition studies for two potential isomeric cast primary explosives [C] // Proceeding of the Sixth Symposium (International) on Detonation. White Oak: Office of Naval Research, 1976: 231.
    [31]
    JACOBS S J. Comment on “deflagration-to-detonation transition studies for two potential isomeric cast primary explosives” [C] // Proceedings of the Sixth Symposium (International) on Detonation. Arlington, VA: Office of Naval Research, 1976: 249.
    [32]
    ASAY B. Shock wave science and technology reference library, Vol. 5: non-shock initiation of explosives [M]. Springer Science & Business Media, 2010: 483−533.
    [33]
    BERGHOUT H L, SON S F, ASAY B W. Convective burning in gaps of PBX 9501 [J]. Proceedings of the Combustion Institute, 2000, 28(1): 911–917. DOI: 10.1016/S0082-0784(00)80297-0.
    [34]
    JACKSON S I, HILL L G. Predicting runaway reaction in a solid explosive containing a single crack [C] // AIP Conference Proceedings, 2007, 955(1): 927−930.
    [35]
    HOLMES M D, PARKER Jr G R, HEATWOLE E M, et al. Center-ignited spherical-mass explosion (CISME); FY 2018 report [R]. Los Alamos, New Mexico, United States: Los Alamos National Laboratory, 2018.
    [36]
    HOLMES M D, PARKER Jr G R, HEATWOLE E M, et al. Fracture effects on explosive response (FEER); FY2018 report [R]. Los Alamos, New Mexico, United States : Los Alamos National Laboratory, 2018.
    [37]
    文尚刚. 炸药缝隙中燃烧模式转化及反应烈度增长行为研究[R]. 四川绵阳: 中国工程物理研究院, 2017.
    [38]
    DAI X G, WEN Y S, HUANG F L, et al. Effect of temperature, density and confinement on deflagration to detonation transition of an HMX‐based explosive [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4): 563–567. DOI: 10.1002/prep.201300112.
    [39]
    王建, 文尚刚. 以HMX为基的两种压装高密度炸药的燃烧转爆轰实验研究 [J]. 高压物理学报, 2009, 23(6): 441–446. DOI: 10.3969/j.issn.1000-5773.2009.06.007.

    WANG J, WEN S G. Experimental study on deflagration-to-detonation transition in two pressed high-density explosives [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 441–446. DOI: 10.3969/j.issn.1000-5773.2009.06.007.
    [40]
    王建, 文尚刚, 何智, 等. 压装高能炸药的燃烧转爆轰实验研究 [J]. 火炸药学报, 2009, 32(5): 25–28. DOI: 10.3969/j.issn.1007-7812.2009.05.008.

    WANG J, WEN S G, HE Z, et al. Experimental study on deflagration to detonation transition in pressed high density explosives [J]. Chinese Journal of Explosives and Propellants, 2009, 32(5): 25–28. DOI: 10.3969/j.issn.1007-7812.2009.05.008.
    [41]
    代晓淦, 申春迎, 文玉史. 模拟跌落撞击下PBX-2炸药的响应 [J]. 含能材料, 2011, 19(2): 209–212. DOI: 10.3969/j.issn.1006-9941.2011.02.019.

    DAI X G, SHEN C Y, WEN Y S. Reaction of PBX-2 explosive under simulated drop impact [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 209–212. DOI: 10.3969/j.issn.1006-9941.2011.02.019.
    [42]
    李涛. 低幅值冲击条件下带壳炸药反应烈度的研究[D]. 四川绵阳: 中国工程物理研究院, 2003.
    [43]
    李克武, 尚海林, 胡秋实, 等. 针对PBX炸药的SHPB实验方法改进与结果解读[C] // 第十四届全国物理力学学术会议缩编文集. 四川绵阳, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (6075) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return