Citation: | LI Tao, HU Haibo, SHANG Hailin, FU Hua, WEN Shanggang, YU Hong. Propagation of reactive cracks and characterization of reaction violence in spherical charge under strong confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011402. doi: 10.11883/bzycj-2019-0348 |
[1] |
ASAY B. Shock wave science and technology reference library, Vol. 5: Non-shock initiation of explosives [M]. Springer Science & Business Media, 2010: 245−292.
|
[2] |
JACKSON S I, HILL L G. Predicting runaway reaction in a solid explosive containing a single crack [C] // AIP Conference Proceed-ings, 2007, 955(1): 927−930.
|
[3] |
ANDREEVSKIKH L A, VAKHMISTROV S A, PRONIN D A, et al. Convective combustion in the slot of an explosive charge [J]. Combustion, Explosion, and Shock Waves, 2015, 51(6): 659–663. DOI: 10.1134/S0010508215060064.
|
[4] |
DYER A S, TAYLOR J W. Initiation of detonation by friction on a high explosive charge [C] // 5th Symposium (International) on Detonation. ONR, 1970: 291−300.
|
[5] |
IDAR D J, LUCHT R A, SCAMMON R, et al. PBX 9501 high explosive violent response/low amplitude insult project: Phase I [R]. Los Alamos National Laboratory. New Mexico, United States, 1997.
|
[6] |
ASAY B W, SON S F, BDZIL J B. The role of gas permeation in convective burning [J]. International Journal of Multiphase Flow, 1996, 22(5): 923–952. DOI: 10.1016/0301-9322(96)00041-9.
|
[7] |
DICKSON P M, ASAY B W, HENSON B F, et al. Observation of the behaviour of confined PBX 9501 following a simulated cook-off ignition [R]. Los Alamos National Laboratory. Los Alamos, New Mexico, United States, 1998.
|
[8] |
SMILOWITZ L, HENSON B F, ROMERO J J, et al. Direct observation of the phenomenology of a solid thermal explosion using time-resolved proton radiography [J]. Physical Review Letters, 2008, 100(22): 228301. DOI: 10.1103/PhysRevLett.100.228301.
|
[9] |
北京工业学院八系. 爆炸及其作用(下册) [M]. 北京: 国防工业出版社, 1979.
|
[10] |
SHANG H L, YANG J, LI T, et al. Convective burning in confined explosive cracks of HMX-based PBX under non-shock initia-tion [C] // 16th International Detonation Symposium, 2018.
|
[11] |
HOLMES M D, PARKER Jr G R, HEATWOLE E M, et al. Center-ignited spherical-mass explosion (CISME); FY 2018 Report [R]. Los Alamos National Laboratory, Los Alamos, New Mexico, United States, 2018.
|
[12] |
HOLMES M D, PARKER JR G R, HEATWOLE E M, et al. Fracture effects on explosive response (FEER); FY2018 Report [R]. Los Alamos National Laboratory, Los Alamos, New Mexico, United States, 2018.
|
[13] |
HU H B, LI T, WEN S G, et al. Experimental study on the reaction evolution of pressed explosives in long thick wall cylinder con-finement [C] // XXI Khariton’s Scientific Readings. Sarov, Russia, 2019.
|
[14] |
MAČEK A. Transition from deflagration to detonation in cast explosives [J]. The Journal of Chemical Physics, 1959, 31(1): 162–167. DOI: 10.1063/1.1730287.
|
1. | 刘成,刘一鸣,叶群水,胡涛. 准静态和冲击荷载下应变硬化水泥基复合材料剪切性能研究. 硅酸盐通报. 2025(03): 821-833 . ![]() | |
2. | 李堂军,李亮,王子晨,姜锡权. 钢-PE混杂纤维水泥基复合材料动态压缩性能试验研究. 防灾减灾工程学报. 2024(05): 1140-1148 . ![]() | |
3. | 侯永利,俞正兴,周磊磊,吕东朔. 玄武岩纤维再生混凝土冻融后的弯曲疲劳特性. 建筑科学与工程学报. 2023(01): 14-20 . ![]() | |
4. | 胡安辉,万锡梓,王震,李亮亮,李亚彪,王敏嘉,武金鹏. 不同应变率下超高韧性水泥基复合材料力学性能. 山西建筑. 2023(13): 137-140 . ![]() | |
5. | 郭伟娜,鲍玖文,张鹏,孙燕群,马衍轩,赵铁军. 基于数字图像方法的混掺纤维应变硬化水泥基复合材料力学性能及变形特征. 硅酸盐学报. 2022(05): 1401-1409 . ![]() | |
6. | 郑志豪,任辉启,龙志林,郭瑞奇,蔡洋,黎智健. PP/CF增强珊瑚砂水泥基复合材料冲击压缩力学性能研究. 爆炸与冲击. 2022(07): 61-73 . ![]() | |
7. | 魏长江,张治博,苟耀虎,李碧雄,赵小刚,范承宁. 原材料对高延性水泥基材料的性能影响研究综述. 重庆建筑. 2022(12): 32-35 . ![]() | |
8. | 张俊才. 硫胶凝型无水混凝土的研究. 科学技术创新. 2021(01): 147-148 . ![]() | |
9. | 陈雨婷,李妍,罗传春. 玄武岩原料组成对其纤维抗拉强度的影响. 山东化工. 2021(12): 111-113 . ![]() | |
10. | 谢涛,王梦菊,代龙富. 浸润剂对玄武岩纤维抗拉强度的影响. 山东化工. 2021(15): 22-24 . ![]() | |
11. | 徐赛仙,陶燕,柴栋,金轶凡,何颖成,李柳红. 玄武岩纤维水泥基复合材料单轴受拉性能研究. 混凝土. 2021(10): 62-66 . ![]() | |
12. | 何晓雁,张智鑫,赵燕茹,郝贠洪,秦立达. 基于灰靶决策对BFCC力学性能及抗渗性能的评估. 材料导报. 2021(20): 20035-20039+20051 . ![]() | |
13. | 王超,蔚立元,杜明瑞,苏海健,吴疆宇,葛云. 碳纳米管增强水泥净浆的动态力学特性. 硅酸盐学报. 2021(11): 2486-2493 . ![]() | |
14. | 王汉鹏,李占鸿,谢正良,余江滔,邹勇. 应变强化型水泥基复合材料研究综述. 结构工程师. 2021(05): 222-230 . ![]() |