ZHANG Na, ZHOU Jian, XU Mingfeng, LI Hui, MA Guowei. Dynamic mechanical properties of basalt fiber engineered cementitious composites[J]. Explosion And Shock Waves, 2020, 40(5): 053101. doi: 10.11883/bzycj-2019-0351
Citation: ZHANG Na, ZHOU Jian, XU Mingfeng, LI Hui, MA Guowei. Dynamic mechanical properties of basalt fiber engineered cementitious composites[J]. Explosion And Shock Waves, 2020, 40(5): 053101. doi: 10.11883/bzycj-2019-0351

Dynamic mechanical properties of basalt fiber engineered cementitious composites

doi: 10.11883/bzycj-2019-0351
  • Received Date: 2019-09-11
  • Rev Recd Date: 2019-12-11
  • Available Online: 2020-03-25
  • Publish Date: 2020-05-01
  • Basalt fiber engineered cementitious composites (BF-ECCs) were prepared by using a certain ratio of basalt fiber and cement-based material. The prepared material showed multiple cracks in static tensile test and its tensile strain was above 0.5%. For the cementitious composites with different basalt fiber contents, dynamic compression and dynamic splitting tests were carried out by using a split Hopkinson pressure bar (SHPB) device. The results show the followings. (1) Both the static and dynamic strengths are enhanced under compression and tension conditions by basalt fiber. At high strain rates, the dynamic increase in compressive strength is small, and the dynamic increase in the splitting strength is large. (2) The compressive and splitting strengths of the BF-ECCs increase significantly with increasing strain rate, both of which can use a dynamic increase factor (DIF) to reflect the increase in dynamic strength, but the strain rate sensitivity of the splitting strength is stronger than that of the compressive strength. (3) According to the test, the CEB-FIP equation (2010) of ordinary cement concrete rate sensitivity is not applicable to the BF-ECCs.
  • [1]
    LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites [J]. Journal of Engineering Mechanics, 1992, 118(11): 2246–2264. DOI: 10.1061/(ASCE)0733-9399(1992)118:11(2246).
    [2]
    MAALEJ M, LI V C. Flexural/tensile-strength ratio in engineered cementitious composites [J]. Journal of Materials in Civil Engineering, 1994, 6(4): 513–528. DOI: 10.1061/(ASCE)0899-1561(1994)6:4(513).
    [3]
    徐世烺, 李庆华. 超高韧性水泥基复合材料在高性能建筑结构中的基本应用[M]. 北京: 科学出版社, 2010: 5−6.
    [4]
    徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用 [J]. 土木工程学报, 2008, 41(6): 45–60. DOI: 10.3321/j.issn:1000-131X.2008.06.008.

    XU S L, LI H D. A review on the development of research and application of ultra high toughness cementitious composites [J]. China Civil Engineering Journal, 2008, 41(6): 45–60. DOI: 10.3321/j.issn:1000-131X.2008.06.008.
    [5]
    刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大连: 大连理工大学, 2011: 35−36.
    [6]
    YANG E H, LI V C. Rate dependence in engineered cementitious composites [C] // YANG E H, LI V C. International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications. Honolulu, Hawaii, USA: RILEM Publications SARL, 2006: 83−92.
    [7]
    YANG E H, LI V C. Tailoring engineered cementitious composites for impact resistance [J]. Cement and Concrete Research, 2012, 42(8): 1066–1071. DOI: 10.1016/j.cemconres.2012.04.006.
    [8]
    MAALEJ M, QUEK S T, ZHANG J. Behaviour of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. Journal of Materials in Civil Engineering, 2005, 17(2): 143–152. DOI: 10.1061/(ASCE)0899-1561(2005)17:2(143).
    [9]
    ZHANG J, MAALEJ M, QUEK S T. Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact [J]. Journal of Materials in Civil Engineering, 2007, 19(10): 855–863. DOI: 10.1061/(ASCE)0899-1561(2007)19:10(855).
    [10]
    MECHTCHERINE V, MILLON O, BUTLE M, et al. Mechanical behaviour of strain hardening cement-based composites under impact loading [J]. Cement and Concrete Composites, 2011, 33(1): 1–11. DOI: 10.1016/j.cemconcomp.2010.09.018.
    [11]
    SOE K T, ZHANG Y X, ZHANG L C. Impact resistance of hybrid-fiber engineered cementitious composite panels [J]. Composite Structures, 2013, 104: 320–330. DOI: 10.1016/j.compstruct.2013.01.029.
    [12]
    LI V C, MISHRA D K, WU H C. Matrix design for Pseudo-strain-hardening fibre reinforced cementitious composites [J]. Materials and Structures, 1995, 28(10): 586–595. DOI: 10.1007/BF02473191.
    [13]
    LI V C, WANG S X, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC) [J]. ACI Materials Journal, 2001, 98(6): 483–492.
    [14]
    ZHOU J, QIAN S Z, BELTRAN M G S., et al Development of engineered cementitious composites with limestone powder and blast furnace slag [J]. Materials and Structures, 2010, 43(6): 803–814. DOI: 10.1617/s11527-009-9549-0.
    [15]
    PAKRAVAN H R, JAMSHIDI M, LATIFI M. Study on fiber hybridization effect of engineered cementitious composites with low- and high-modulus polymeric fibers [J]. Construction and Building Materials, 2016, 112: 739–746. DOI: 10.1016/j.conbuildmat.2016.02.112.
    [16]
    成涛华, 李玉香. 玄武岩纤维增强混凝土力学性能研究 [J]. 混凝土与水泥制品, 2017(1): 53–56. DOI: 10.3969/j.issn.1000-4637.2017.01.012.

    CHEN T H, LI Y X. Study on mechanical performance of basalt fiber reinforced concrete [J]. China Concrete and Cement Products, 2017(1): 53–56. DOI: 10.3969/j.issn.1000-4637.2017.01.012.
    [17]
    葛浩军. 玄武岩纤维混凝土力学性能及耐久性研究[D]. 大连: 大连理工大学, 2019.
    [18]
    SUN X J, GAO Z, CAO P, et al. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete [J]. Construction and Building Materials, 2019, 202: 58–72. DOI: 10.1016/j.conbuildmat.2019.01.018.
    [19]
    李为民, 许金余. 玄武岩纤维混凝土的冲击力学行为及本构模型 [J]. 工程力学, 2009, 26(1): 86–91.

    LI W M, XU J Y. Dynamic behavior and constitutive model of basalt fiber reinforced concrete under impact loading [J]. Engineering Mechanics, 2009, 26(1): 86–91.
    [20]
    朱涵, 刘昂, 于泳. 低温下玄武岩纤维混凝土的抗冲击性能 [J]. 材料科学与工程学报, 2018, 36(4): 600–604.

    ZHU H, LIU A, YU Y. Low temperature impact performance of basalt fiber reinforced concrete [J]. Journal of Materials Science and Engineering, 2018, 36(4): 600–604.
    [21]
    ZHANG H, WANG B, XIE A Y, et al. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete [J]. Construction and Building Materials, 2017, 152: 154–167. DOI: 10.1016/j.conbuildmat.2017.06.177.
    [22]
    工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461-2018 [S]. 北京: 建材工业出版社, 2018.
    [23]
    CEB, FIP. FIB model code 2010 [S]. 2011.
  • Cited by

    Periodical cited type(14)

    1. 刘成,刘一鸣,叶群水,胡涛. 准静态和冲击荷载下应变硬化水泥基复合材料剪切性能研究. 硅酸盐通报. 2025(03): 821-833 .
    2. 李堂军,李亮,王子晨,姜锡权. 钢-PE混杂纤维水泥基复合材料动态压缩性能试验研究. 防灾减灾工程学报. 2024(05): 1140-1148 .
    3. 侯永利,俞正兴,周磊磊,吕东朔. 玄武岩纤维再生混凝土冻融后的弯曲疲劳特性. 建筑科学与工程学报. 2023(01): 14-20 .
    4. 胡安辉,万锡梓,王震,李亮亮,李亚彪,王敏嘉,武金鹏. 不同应变率下超高韧性水泥基复合材料力学性能. 山西建筑. 2023(13): 137-140 .
    5. 郭伟娜,鲍玖文,张鹏,孙燕群,马衍轩,赵铁军. 基于数字图像方法的混掺纤维应变硬化水泥基复合材料力学性能及变形特征. 硅酸盐学报. 2022(05): 1401-1409 .
    6. 郑志豪,任辉启,龙志林,郭瑞奇,蔡洋,黎智健. PP/CF增强珊瑚砂水泥基复合材料冲击压缩力学性能研究. 爆炸与冲击. 2022(07): 61-73 . 本站查看
    7. 魏长江,张治博,苟耀虎,李碧雄,赵小刚,范承宁. 原材料对高延性水泥基材料的性能影响研究综述. 重庆建筑. 2022(12): 32-35 .
    8. 张俊才. 硫胶凝型无水混凝土的研究. 科学技术创新. 2021(01): 147-148 .
    9. 陈雨婷,李妍,罗传春. 玄武岩原料组成对其纤维抗拉强度的影响. 山东化工. 2021(12): 111-113 .
    10. 谢涛,王梦菊,代龙富. 浸润剂对玄武岩纤维抗拉强度的影响. 山东化工. 2021(15): 22-24 .
    11. 徐赛仙,陶燕,柴栋,金轶凡,何颖成,李柳红. 玄武岩纤维水泥基复合材料单轴受拉性能研究. 混凝土. 2021(10): 62-66 .
    12. 何晓雁,张智鑫,赵燕茹,郝贠洪,秦立达. 基于灰靶决策对BFCC力学性能及抗渗性能的评估. 材料导报. 2021(20): 20035-20039+20051 .
    13. 王超,蔚立元,杜明瑞,苏海健,吴疆宇,葛云. 碳纳米管增强水泥净浆的动态力学特性. 硅酸盐学报. 2021(11): 2486-2493 .
    14. 王汉鹏,李占鸿,谢正良,余江滔,邹勇. 应变强化型水泥基复合材料研究综述. 结构工程师. 2021(05): 222-230 .

    Other cited types(14)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (6290) PDF downloads(116) Cited by(28)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return