Volume 40 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
ZHAO Zhangyong, WANG Mingyang, QIU Yanyu, ZI Min, XING Huadao. The propagation laws of blast wave in unsaturated calcareous sand[J]. Explosion And Shock Waves, 2020, 40(8): 083201. doi: 10.11883/bzycj-2019-0389
Citation: ZHAO Zhangyong, WANG Mingyang, QIU Yanyu, ZI Min, XING Huadao. The propagation laws of blast wave in unsaturated calcareous sand[J]. Explosion And Shock Waves, 2020, 40(8): 083201. doi: 10.11883/bzycj-2019-0389

The propagation laws of blast wave in unsaturated calcareous sand

doi: 10.11883/bzycj-2019-0389
  • Received Date: 2019-10-16
  • Rev Recd Date: 2020-06-21
  • Available Online: 2020-07-25
  • Publish Date: 2020-08-01
  • A series of large-scale explosion model tests were carried out in dense unsaturated calcareous sand using spherical TNT explosives. The propagation laws of the blast wave in dense calcareous sand were studied under various conditions, such as explosive mass, buried depth and water content of sand sample, based on analyzing the changes of major parameters of blast wave. The results show that the blast wave propagates mainly in the form of elastic-plastic wave in dense calcareous sand. Moreover, the plastic longitudinal wave velocity increases with the increase of initial density in the dry sand sample. For the wet sand sample, the plastic longitudinal wave velocity increase with the decrease of the water content. More specifically, the corresponding longitudinal wave velocity ranges from 250 to 282 m/s in the dry sand and ranges from 302 to 339 m/s in the wet sand. In the case of concentrated charge, the critical scaled buried depth of closed explosion in unsaturated calcareous sand is about 2.25 m/kg1/3. In the test range, the attenuations of peak normal stress and specific normal impulse of the blast wave in dense calcareous sand obey the explosion similarity law. The stress attenuation coefficient of blast wave in dry calcareous sand is 2.94 or 1.37 respectively at the measured points whose scaled distances are greater than or less than 0.75 m/kg1/3. The stress attenuation coefficient of explosion wave in wet calcareous sand increases with the increase of water content and ranges from 1.39 to 1.79. The attenuation coefficient of the specific normal impulse decreases with the increase of the sample water content, and the range is 0.97 to 1.18.
  • loading
  • [1]
    刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展 [J]. 岩土力学, 1995(4): 74–84. DOI: 10.16285/j.rsm.1995.04.010.

    LIU C Q, YANG Z Q, WANG R. The present condition and development in studies of mechanical properties of calcareous soils [J]. Rock and Soil Mechanics, 1995(4): 74–84. DOI: 10.16285/j.rsm.1995.04.010.
    [2]
    陈海洋. 钙质砂的内孔隙研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005: 1−11.
    [3]
    陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析 [J]. 岩土力学, 2005, 26(9): 1389–1392. DOI: 10.3969/j.issn.1000-7598.2005.09.008.

    CHEN H Y, WANG R, LI J G, et al. Grain shape analysis of calcareous soil [J]. Rock and Soil Mechanics, 2005, 26(9): 1389–1392. DOI: 10.3969/j.issn.1000-7598.2005.09.008.
    [4]
    张家铭. 钙质砂基本力学性质及颗粒破碎影响研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2004: 1−9.
    [5]
    虞海珍. 复杂应力条件下饱和钙质砂动力特性的试验研究[D]. 武汉: 华中科技大学, 2006: 1−16.
    [6]
    李建国. 波浪荷载作用下饱和钙质砂动力特性的试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005: 1−10.
    [7]
    SOCHET I, GARDEBAS D, CALDERARA S. Fundamental of protective design for conventional weapons: TM5-855-1[R]. Department of The Army Technical Manual, USA Army Corps of Engineers. 1986.
    [8]
    LYAKHOV G M. Fundamentals of explosion dynamics in soils and liquid media [M]. Moscow: Nedra, 1964.
    [9]
    LYAKHOV G M, OSADCHENKO R A, POLYAKOVA N I. Plane waves in nonhomogeneous plastic media and their interaction with obstacles [J]. Journal of Applied Mechanics and Technical Physics, 1969, 10(4): 559–566. DOI: 10.1007/bf00916211.
    [10]
    ZAKHAROV S D, LYAKHOV G M, MIZYAKIN S D. Determination of the dynamic compressibility of soil based on the parameters of plane detonation waves [J]. Journal of Applied Mechanics and Technical Physics, 1972, 13(1): 126–130. DOI: 10.1007/BF00852370.
    [11]
    LYAKHOV G M, OKHITIN V N. Spherical blast waves in multicomponent media [J]. Journal of Applied Mechanics and Technical Physics, 1974, 15(2): 208–214. DOI: 10.1007/BF00850660.
    [12]
    LYAKHOV G M, VOVK A A, KRAVETS V G, et al. Compaction of loessal soils by detonation of surface charges [J]. Soil Mechanics and Foundation Engineering, 1976, 13(2): 121–125. DOI: 10.1007/BF01703745.
    [13]
    LYAKHOV G M. Waves in soils and porous multicomponent media [M]. Nauka, Moscow, 1982.
    [14]
    LYAKHOV G M, SALITSKAYA V I. Dissipation of blast waves and the dynamic compressibility of soils [J]. Combustion, Explosion and Shock Waves, 1983, 19(1): 90–93. DOI: 10.1007/BF00790244.
    [15]
    KRYMSKⅡ A V, LYAKHOV G M. Waves from an underground explosion [J]. Journal of Applied Mechanics and Technical Physics, 1984, 25(3): 361–367. DOI: 10.1007/BF00910394.
    [16]
    LYAKHOV G M, LUCHKO I A, PLAKSⅡ V A, et al. Spherical detonation waves in a solid multicomponent viscoplastic medium [J]. Soviet Applied Mechanics, 1986, 22(5): 490–495. DOI: 10.1007/BF00888551.
    [17]
    梁霍夫 Г M. 岩土中爆炸动力学基础[M]. 刘光寰, 王明洋, 译. 南京: 工程兵工程学院, 1993.
    [18]
    KARINSKI Y S, FELDGUN V R, YANKELEVSKY D Z. Effect of soil locking on the cylindrical shock wave’s peak pressure attenuation [J]. Journal of engineering mechanics, 2009, 135(10): 1166–1179. DOI: 10.1061/(ASCE)EM.1943-7889.0000042.
    [19]
    YANKELEVSKY D Z, KARINSKI Y S, FELDGUN V R. Re-examination of the shock wave’s peak pressure attenuation in soils [J]. International Journal of Impact Engineering, 2011, 38(11): 864–881. DOI: 10.1016/j.ijimpeng.2011.05.011.
    [20]
    KARINSKI Y S, FELDGUN V R, RACAH E, et al. Mach stem due to an underground explosion near a rigid structure buried in soil [J]. Shock Waves, 2015, 25(1): 63–76. DOI: 10.1007/s00193-014-0544-1.
    [21]
    徐学勇, 汪稔, 王新志, 等. 饱和钙质砂爆炸响应动力特性试验研究 [J]. 岩土力学, 2012, 33(10): 2953–2959. DOI: 10.16285/j.rsm.2012.10.005.

    XU X Y, WANG R, WANG X Z, et al. Experimental study of dynamic behavior of saturated calcareous sand due to explosion [J]. Rock and Soil Mechanics, 2012, 33(10): 2953–2959. DOI: 10.16285/j.rsm.2012.10.005.
    [22]
    徐学勇. 饱和钙质砂爆炸响应动力特性研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2009: 89−91.
    [23]
    谢定义. 非饱和土土力学[M]. 北京: 高等教育出版社, 2015.
    [24]
    MULILIS J P, ARULANANDAN K, MITCHELL J K, et al. Effects of sample preparation on sand liquefaction [J]. Journal of the Geotechnical Engineering Division, 1977, 103(2): 91–108. DOI: 10.1016/0148-9062(77)90060-2.
    [25]
    LADD R S. Specimen preparation and cyclic stability of sands [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1977, 103(GT-6). DOI: 10.1016/0148-9062(75)91261-9.
    [26]
    JUANG C H, HOLTZ R D. Fabric, pore size distribution, and permeability of sandy soils [J]. Journal of Geotechnical Engineering, 1986, 112(9): 855–868. DOI: 10.1061/(ASCE)0733-9410(1986)112:9(855).
    [27]
    NIMMO J R, AKSTIN K C. Hydraulic conductivity of a sandy soil at low water content after compaction by various methods [J]. Soil Science Society of America Journal, 1988, 52(2): 303–310. DOI: 10.2136/sssaj1988.03615995005200020001x.
    [28]
    亨利奇 J. 爆炸动力学及其应用[M]. 熊建国, 译. 北京: 科学出版社, 1987.
    [29]
    谢多夫 Л Н. 力学中的相似方法与量纲理论[M]. 沈青, 译. 北京: 科学出版社, 1982.
    [30]
    马立秋, 张建民. 黏性土爆炸成坑和地冲击传播的离心模型试验研究 [J]. 岩石力学与工程学报, 2011(S1): 3172–3178.

    MA L Q, ZHANG J M. Centrifugal model testing study of explosion induced craters and propagation of ground shock in clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011(S1): 3172–3178.
    [31]
    穆朝民, 任辉启, 辛凯, 等. 变埋深条件下土中爆炸成坑效应 [J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 112–116. DOI: 10.7666/j.issn.1009-3443.20100203.

    MU C M, REN H Q, XIN K, et al. Effects of crater formed by explosion in soils [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2): 112–116. DOI: 10.7666/j.issn.1009-3443.20100203.
    [32]
    施鹏, 邓国强, 杨秀敏, 等. 土中爆炸地冲击能量分布研究 [J]. 爆炸与冲击, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.

    SHI P, DENG G Q, YANG X M, et al. Study on ground shock energy distribution of explosion in soil [J]. Explosion and Shock Waves, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.
    [33]
    叶亚齐, 任辉启, 李永池, 等. 砂质黏土中不同深度爆炸自由场地冲击参数预计方法研究 [J]. 岩石力学与工程学报, 2011, 30(9): 1918–1923.

    YE Y Q, REN H Q, LI Y C, et al. Study of prediction of ground shock parameters in free field at different depths of burst in sandy clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1918–1923.
    [34]
    奥尔连科. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011.
    [35]
    水利电力部. 土工试验方法标准: GB/T 50123-2019 [S].
    [36]
    贾永胜, 王维国, 谢先启, 等. 低含水率砂土和饱和砂土场地爆炸成坑特性实验 [J]. 爆炸与冲击, 2017, 37(5): 799–806. DOI: 10.11883/1001-1455(2017)05-0799-08.

    JIA Y S, WANG W G, XIE X Q, et al. Characterization of blast-induced craters in low-moisture and saturated sand from field experiments [J]. Explosion and Shock Waves, 2017, 37(5): 799–806. DOI: 10.11883/1001-1455(2017)05-0799-08.
    [37]
    KRAUTHAMMER T. Modern protective structures [M]. CRC Press, 2008.
    [38]
    波克罗夫斯基 Г И, 费多罗夫 И С. 在变形介质中冲击与爆破作用[M]. 刘清荣, 黄文彬, 译. 北京: 中国工业出版社, 1965.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(8)

    Article Metrics

    Article views (3904) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return