Volume 40 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
YAN Yongming, YU Wenchao, HE Xiaofei, SUN Ting, SHI Jie. Deformation behavior of WELDOX 700E steel subjected to TNT air-blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 073102. doi: 10.11883/bzycj-2019-0430
Citation: YAN Yongming, YU Wenchao, HE Xiaofei, SUN Ting, SHI Jie. Deformation behavior of WELDOX 700E steel subjected to TNT air-blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 073102. doi: 10.11883/bzycj-2019-0430

Deformation behavior of WELDOX 700E steel subjected to TNT air-blast loading

doi: 10.11883/bzycj-2019-0430
  • Received Date: 2019-11-11
  • Rev Recd Date: 2020-02-13
  • Publish Date: 2020-07-01
  • The deformation behavior of 8 mm and 12 mm WELDOX 700E steel, at stand-off distance 250 mm, subjected to air-blast loading by 6 kg and 10 kg spherical TNT, was investigated. The simulation model of WELDOX 700E steel subjected to air-blast loading is established using ABAQUS. The results indicate that strength is one of key factors affecting the deformation behavior of WELDOX 700E steel. High strength WELDOX 700E steel presents uniform arch deformation under spherical TNT air blast loading. The maximum dynamic displacement, permanent deflection and rebound of 8 mm WELDOX 700E steel midpoint subjected to 6 kg TNT are 144 mm, 124 mm and 21 mm, respectively. The maximum dynamic displacement, permanent deflection and rebound of 12 mm WELDOX 700E steel midpoint subjected to 10 kg TNT are 166 mm, 143 mm and 23 mm, respectively. Without considering the overall deviation of experimental setup, the simulation results can accurately reflect the deformation behavior of WELDOX 700E steel subjected to spherical TNT air blast loading. Under air-blast loading, the thickness of WELDOX 700E steel decreases significantly, accompanied by strain hardening behavior. Strain hardening behavior is the dislocation growth in martensite of WELDOX 700E steel. Compared with the edge, the dislocation density in the center of 8 mm and 12 mm WELDOX 700E steel plate increases by 80.31% and 151.76%, respectively.
  • loading
  • [1]
    RAHMAAN T, BARDELCIK A, IMBERT J, et al. Effect of strain rate on flow stress and anisotropy of DP600, TRIP780, and AA5182-O sheet metal alloys [J]. Impact Engineering, 2016, 88(2): 72–90. DOI: 10.1016/j.ijimpeng.2015.09.006.
    [2]
    韩守红, 吕振华. 铝泡沫夹层结构抗爆炸性能仿真分析及优化 [J]. 兵工学报, 2010, 11(31): 1468–1474. DOI: 10.3184/030823410X12680741110954.

    HAN S H, LV Z H. Numerical simulation of blast-resistant performance of aluminum foam sandwich structures and optimization [J]. Acta Armamentarii, 2010, 11(31): 1468–1474. DOI: 10.3184/030823410X12680741110954.
    [3]
    陈学军, 杨学文, 张永珍. 地雷爆炸作用下装甲车辆底部防护结构优化仿真研究 [J]. 兵工学报, 2014, 2(35): 353–357. DOI: CNKI: SUN: BIGO. 0. 2014-S2-066.

    CHEN X J, YANG X W, ZHANG Y Z. A simulation study of structural optimization of armor vehicle bottomprotection under the landmine explosion [J]. Acta Armamentarii, 2014, 2(35): 353–357. DOI: CNKI: SUN: BIGO. 0. 2014-S2-066.
    [4]
    张钱城, 郝方楠, 李裕春,等. 爆炸冲击载荷作用下车辆和人员的损伤与防护 [J]. 力学与实践, 2014, 5(36): 527–539. DOI: 10.6052/1000-0879-13-539.

    ZHANG Q C, HAO F N, LI Y C, et al. Research progress in the injury and protection on vehicle and passengers under explosive shock loading [J]. Mechanics in Engineering, 2014, 5(36): 527–539. DOI: 10.6052/1000-0879-13-539.
    [5]
    CHUNG K Y S, LANGDON G S, NURICK G N, et al. Response of V-shape plates to localised blast load: experiments and numerical simulation [J]. Impact Engineering, 2012, 2(46): 97–109. DOI: 10.1016/j.ijimpeng.2012.02.007.
    [6]
    BORVIK T, OLOVSSON L, HANSSEN A G, et al. A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates [J]. Mechanics and Physics of Solids, 2011, 3(59): 940–958. DOI: 10.1016/j.jmps.2011.03.004.
    [7]
    JUHO P, HAE-JIN C. Experiments and numerical analyses of HB400 and aluminum foam sandwich structure under landmine explosion [J]. Composite Structures, 2015, 11(134): 726–739. DOI: 10.1016/j.compstruct.2015.08.133.
    [8]
    MENKES S B, OPAT H J. Broken beams-tearing and shear failures in explosively loaded clamped beams [J]. Experimental Mechanics, 1973, 13(11): 480–486. DOI: 10.1007/BF02322734.
    [9]
    TEELING S, NURICK G N. The deformation and tearing of thin circular paltes subjected to impulsive loads [J]. Impact Engineering, 1991, 11(1): 77–91. DOI: 10.1016/0734-743X(91)90032-B.
    [10]
    BRODE H L. Blast wave from a spherical charge [J]. Physics of Fluids, 1959, 2(2): 217–229. DOI: 10.1063/1.1705911.
    [11]
    SEUNG H K, YOON S C, YONG J C. Parametric analyese of major nuclear components and reinforced concrete structures under FCI-induced explosive condition [J]. Nuclear Engineering and Design, 2017, 3(322): 148–158. DOI: 10.1016/j.nucengdes.2017.06.029.
    [12]
    JACON N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads [J]. Engineering Structures, 2007, 3(29): 2723–2736. DOI: 10.1016/j.engstruct.2007.01.021.
    [13]
    LING Z, NOBUAKI S, TAKAHITO O. Real time correlation between flow stress and dislocation density in steel during deformation [J]. Materials Science & Engineering A, 2014, 4(611): 188–193. DOI: 10.1016/j.msea.2014.05.073.
    [14]
    AMRITA K, DAVID P F. Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel [J]. Materials Science & Engineering A, 2016, 5(667): 435–443. DOI: 10.1016/j.msea.2016.05.022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (3062) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return