JIN Jiefang, WU Yue, ZHANG Rui, WANG Xibo, YU Xiong, ZHONG Yilu. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone[J]. Explosion And Shock Waves, 2020, 40(10): 103101. doi: 10.11883/bzycj-2019-0479
Citation: JIN Jiefang, WU Yue, ZHANG Rui, WANG Xibo, YU Xiong, ZHONG Yilu. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone[J]. Explosion And Shock Waves, 2020, 40(10): 103101. doi: 10.11883/bzycj-2019-0479

Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone

doi: 10.11883/bzycj-2019-0479
  • Received Date: 2019-12-25
  • Rev Recd Date: 2020-02-19
  • Available Online: 2020-08-25
  • Publish Date: 2020-10-05
  • Due to the excavation unloading effect and the amplitude attenuation of stress wave, the rock masses locating the different distances away from the blasting source are subjected to different geostress and impact loadings during the blasting excavation of underground rock mass. The construction of relationship between rock dynamic failure properties with impact loadings has more important engineering practical significance compared with representating them with strain rate. In order to investigate the effect of the values of impact loading and the geostress on the characteristics of rock failure and energy dissipation, impact experiments of red sandstone were carried out with a modified split Hopkinson pressure bar testing system, the impact velocities and axial static stresses were set seven levels, respectively. The effects of impact velocity on the failure mode and mechanism of red sandstone under different axial static stresses were researched based on the broken rock specimens. By analyzing the energy values of stress waves under different experimental conditions, the effects of the impact velocity and the axial static stress on energy dissipation of red sandstone were investigated. The fragment fractal dimensions of red sandstone under different impact velocities and axial static stresses were studied based on the sieve test results of the broken specimens. The results show that the increase of impact velocity will aggravate the destroy degree of the red sandstone. The main part after macroscopic failure remains a circular cylinder when a red sandstone specimen is subjected to impact loading and no axial static stress, the failure of the specimen is resulted from its insufficiency of resistance to tensile deformation; but the main part after macroscopic failure represents a hourglass shape when the specimen is under coupled axial static stress and impact loading, the failure mechanism is mixed tension and shear fracture. The dissipation energy of the red sandstone increases in a quadratic function with increasing the impact velocity, the higher the axial static stress, the smaller the increasing amplitude. With the increase of impact velocity, the fractal dimension of the red sandstone increases from zero gradually. For a rock specimen subjected to specific axial static stress, there is a critical impact velocity which signifies that the fractal dimension of the specimen will change from zero to greater than zero, and the critical impact velocity increases first and then decreases with the increase of axial static stress.
  • [1]
    李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究 [J]. 岩石力学与工程学报, 2008, 27(7): 1387–1395. DOI: 10.3321/j.issn:1000-6915.2008.07.011.

    LI X B, ZHOU Z L, YE Z Y, et al. Study of rock mechanical characteristics under coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387–1395. DOI: 10.3321/j.issn:1000-6915.2008.07.011.
    [2]
    严鹏, 卢文波, 李洪涛, 等. 地应力对爆破过程中围岩振动能量分布的影响 [J]. 爆炸与冲击, 2009, 29(2): 182–188. DOI: 10.11883/1001-1455(2009)02-0182-07.

    YAN P, LU W B, LI H T, et al. Influences of geo-stress on energy distribution of vibration induced by blasting excavation [J]. Explosion and Shock Waves, 2009, 29(2): 182–188. DOI: 10.11883/1001-1455(2009)02-0182-07.
    [3]
    黄达, 谭清, 黄润秋. 高围压卸荷条件下大理岩破碎块度分形特征及其与能量相关性研究 [J]. 岩石力学与工程学报, 2012, 31(7): 1379–1389. DOI: 10.3969/j.issn.1000-6915.2012.07.010.

    HUANG D, TAN Q, HUANG R Q. Fractal characteristics of fragmentation and correlation with energy of marble under unloading with high confining pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1379–1389. DOI: 10.3969/j.issn.1000-6915.2012.07.010.
    [4]
    张文清, 石必明, 穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究 [J]. 采矿与安全工程学报, 2016, 33(2): 375–380. DOI: 10.13545/j.cnki.jmse.2016.02.029.

    ZHANG W Q, SHI B M, MU C M. Experimental research on failure and energy dissipation law of coal under impact load [J]. Journal of Mining and Safety Engineering, 2016, 33(2): 375–380. DOI: 10.13545/j.cnki.jmse.2016.02.029.
    [5]
    金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [6]
    LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [7]
    赵光明, 马文伟, 孟祥瑞. 动载作用下岩石类材料破坏模式及能量特性 [J]. 岩土力学, 2015, 36(12): 3598–3605; 3624. DOI: 10.16285/j.rsm.2015.12.033.

    ZHAO G M, MA W W, MENG X R. Damage modes and energy characteristics of rock-like materials under dynamic load [J]. Rock and Soil Mechanics, 2015, 36(12): 3598–3605; 3624. DOI: 10.16285/j.rsm.2015.12.033.
    [8]
    黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究 [J]. 煤炭学报, 2011, 36(12): 2007–2011.

    LI L Y, XU Z Q, XIE H P, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities [J]. Journal of China Coal Society, 2011, 36(12): 2007–2011.
    [9]
    许金余, 刘石. 大理岩冲击加载试验碎块的分形特征分析 [J]. 岩土力学, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.

    XU J Y, LIU S. Research on fractal characteristics of marble fragments subjected to impact loading [J]. Rock and Soil Mechanics, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.
    [10]
    江红祥, 杜长龙, 刘送永. 冲击速度对煤岩破碎能量和粒度分布的影响 [J]. 煤炭学报, 2013, 38(4): 604–609.

    JIANG H X, DU C L, LIU S Y. The effects of impact velocity on energy and size distribution of rock crushing [J]. Journal of China Coal Society, 2013, 38(4): 604–609.
    [11]
    YIN Z Q, CHEN W S, HAO H, et al. Dynamic compressive test of gas-containing coal using a modified split Hopkinson pressure bar system [J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 815–829. DOI: 10.1007/s00603-019-01955-w.
    [12]
    LI X F, LI H B, ZHANG Q B, et al. Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law [J]. Engineering Fracture Mechanics, 2018, 199: 739–759. DOI: 10.1016/j.engfracmech.2018.06.024.
    [13]
    DUAN B F, XIA H L, YANG X X. Impacts of bench blasting vibration on the stability of the surrounding rock masses of roadways [J]. Tunnelling and Underground Space Technology, 2018, 71: 605–622. DOI: 10.1016/j.tust.2017.10.012.
    [14]
    雷文杰, 李金雨, 云美厚. 采动微地震波传播与衰减特性研究 [J]. 岩土力学, 2019, 40(4): 1491–1497. DOI: 10.16285/j.rsm.2017.2424.

    LEI W J, LI J Y, YUN M H. Research on propagation and attenuation characteristics of mining micro-seismic wave [J]. Rock and Soil Mechanics, 2019, 40(4): 1491–1497. DOI: 10.16285/j.rsm.2017.2424.
    [15]
    SU G S, ZHAI S B, JIANG J Q, et al. Influence of radial stress gradient on Strainbursts: an experimental study [J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2659–2676. DOI: 10.1007/s00603-017-1266-3.
    [16]
    ZHU J B, LIAO Z Y, TANG C A. Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses [J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3935–3946. DOI: 10.1007/s00603-016-0993-1.
    [17]
    DU K, TAO M, LI X B, et al. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance [J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3437–3453. DOI: 10.1007/s00603-016-0990-4.
    [18]
    MENG H, LI Q M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments [J]. International Journal of Impact Engineering, 2003, 28(5): 537–555. DOI: 10.1016/S0734-743X(02)00073-8.
    [19]
    RAFIEI RENANI H, MARTIN C D. Modeling the progressive failure of hard rock pillars [J]. Tunnelling and Underground Space Technology, 2018, 74: 71–81. DOI: 10.1016/j.tust.2018.01.006.
    [20]
    ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 423–439. DOI: 10.1016/j.ijrmms.2013.01.005.
    [21]
    ZHOU Z L, ZHAO Y, JIANG Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 184–196. DOI: 10.1016/S1003-6326(17)60021-9.
    [22]
    金解放, 李夕兵, 尹土兵, 等. 轴向冲击下弹性杆中轴向静载对入射波的影响 [J]. 工程力学, 2013, 30(11): 21–27.

    JIN J F, LI X B, YIN T B, et al. Effect of axial static stress of elastic bar on incident stress wave under axial impact loading [J]. Engineering Mechanics, 2013, 30(11): 21–27.
    [23]
    高峰, 谢和平, 巫静波. 岩石损伤和破碎相关性的分形分析 [J]. 岩石力学与工程学报, 1999, 18(5): 503–506. DOI: 10.3321/j.issn:1000-6915.1999.05.002.

    GAO F, XIE H P, WU J B. Fractal analysis of the relation between rock damage and rock fragmentation [J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 503–506. DOI: 10.3321/j.issn:1000-6915.1999.05.002.
    [24]
    LI Y R, HUANG R Q. Relationship between joint roughness coefficient and fractal dimension of rock fracture surfaces [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 15–22. DOI: 10.1016/j.ijrmms.2015.01.007.
    [25]
    SUN H, LIU X L, ZHU J B. Correlational fractal characterisation of stress and acoustic emission during coal and rock failure under multilevel dynamic loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 1–10. DOI: 10.1016/j.ijrmms.2019.03.002.
    [26]
    YIN Z Q, LI X B, JIN J F, et al. Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 175–184. DOI: 10.1016/S1003-6326(11)61158-8.
    [27]
    单晓云, 李占金. 分形理论和岩石破碎的分形研究 [J]. 河北理工学院学报, 2003, 25(2): 11–17;30. DOI: 10.3969/j.issn.1674-0262.2003.02.003.

    SHAN X Y, LI Z J. Fractal theory and fractal study of rock fragmentation [J]. Journal of Hebei Institute of Technology, 2003, 25(2): 11–17;30. DOI: 10.3969/j.issn.1674-0262.2003.02.003.
  • Relative Articles

    [1]CHU Huaibao, CHEN Luyang, YANG Xiaolin, WANG Donghui, WEI Haixia, SUN Bo. Experimental study on impact failure law of water-saturated granite with initial damage[J]. Explosion And Shock Waves, 2025, 45(1): 013101. doi: 10.11883/bzycj-2024-0036
    [2]WANG Tao, MENG Kangpei, LIU Yuezhuan, YUAN Quan, HUANG Hao, CHEN Xiaoping. Effects of impact mass on dynamic mechanical responses and failure modes of square lithium-ion batteries under impact loading[J]. Explosion And Shock Waves, 2025, 45(2): 021423. doi: 10.11883/bzycj-2024-0316
    [3]ZHANG Xu, LIU Xiaohui, LIU Chujia, LUO Ying. Study on dynamic energy dissipation mechanism and damage characteristics of high-temperature marble[J]. Explosion And Shock Waves, 2025, 45(6): 061413. doi: 10.11883/bzycj-2024-0405
    [4]ZUO Ting, LI Xianglong, WANG Jianguo, HU Qiwen, TAO Zihao, HU Tao, ZHANG Binbin, SONG Jiawang. Numerical modeling of the energy dissipation and fragmentation of copper-bearing rock under impact load[J]. Explosion And Shock Waves, 2025, 45(5): 053202. doi: 10.11883/bzycj-2024-0214
    [5]SONG Chunming, ZHONG Jiahe, XU Jiwei, WU Xuezhi, CHENG Yihao. Experimental study on dynamic response and failure mode transformation of reinforced concrete beams under impact[J]. Explosion And Shock Waves, 2024, 44(1): 015101. doi: 10.11883/bzycj-2023-0102
    [6]WANG Zhiliang, WANG Dawei, WANG Shumin, WU Xutao. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading[J]. Explosion And Shock Waves, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243
    [7]JIANG Nan, ZHANG Shuoyan, YAO Yingkang, ZHOU Chuanbo, LUO Xuedong, CAO Huazhang. Energy dissipation characteristics of fragmentation of frozen sandstone[J]. Explosion And Shock Waves, 2024, 44(5): 055201. doi: 10.11883/bzycj-2023-0258
    [8]ZHANG Rongrong, SHEN Yonghui, MA Dongdong, PING Qi, YANG Yi. Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact[J]. Explosion And Shock Waves, 2024, 44(8): 081443. doi: 10.11883/bzycj-2023-0449
    [9]WEN Lei, FENG Wenjie, LI Mingye, KOU Zilong, WANG Liang, YU Junhong. Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks[J]. Explosion And Shock Waves, 2023, 43(11): 113103. doi: 10.11883/bzycj-2023-0061
    [10]DANG Faning, LI Yutao, REN Jie, ZHOU Mei. Analysis of dynamic mechanics and energy characteristics of concrete impact failure[J]. Explosion And Shock Waves, 2022, 42(8): 083202. doi: 10.11883/bzycj-2021-0444
    [11]ZHAO Yong, XIAO Chenglong, YANG Liyun, DING Chenxi, ZHENG Changda. Dynamic caustics experiments on offset effects between dynamic and static cracks[J]. Explosion And Shock Waves, 2020, 40(7): 073201. doi: 10.11883/bzycj-2019-0401
    [12]HE Liling, ZHANG Fangju, YAN Yixia, XIE Ruoze, XU Aimin, ZHOU Yanliang. Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes[J]. Explosion And Shock Waves, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046
    [13]WU Renjie, LI Haibo. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading[J]. Explosion And Shock Waves, 2019, 39(8): 083106. doi: 10.11883/bzycj-2019-0187
    [14]LI Kexuan, LI Tie. Micro-mechanism of bending failure of sandstone under different loading rates[J]. Explosion And Shock Waves, 2019, 39(4): 043101. doi: 10.11883/bzycj-2018-0178
    [15]TANG Lizhong, LIU Chang, WANG Chun, CHEN Yingyi, SHEN Fan. Dynamic influence of frequent dynamic disturbance on high-energy rock mass during confining pressure unloading[J]. Explosion And Shock Waves, 2019, 39(6): 065202. doi: 10.11883/bzycj-2018-0137
    [16]ZHAI Ximei, ZHAO Xinyu. Damage modes and failure mechanism of concrete dome of LNG storage tank[J]. Explosion And Shock Waves, 2018, 38(5): 966-976. doi: 10.11883/bzycj-2017-0090
    [17]Zhang Chao, Xu Song-lin, Wang Peng-fei, Zhang Lei. Deformation and stress nonuniformity of aluminum foam under different impact speeds[J]. Explosion And Shock Waves, 2015, 35(4): 567-575. doi: 10.11883/1001-1455(2015)04-0567-09
    [18]ZHANG She-rong, WANG Gao-hui, WANG Chao, SUN Bo. Failuremodeanalysisofconcretegravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2012, 32(5): 501-507. doi: 10.11883/1001-1455(2012)05-0501-07
    [19]ZHANG Qi-ling, LI Duan-you, LI Bo. Damagepropagationandfailuremodeofgravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2012, 32(6): 609-615. doi: 10.11883/1001-1455(2012)06-0609-07
    [20]LIU Feng, XI Feng. Deformation mechanism and energy dissipation of an elastic-plastic cantilever beam subjected to step loading[J]. Explosion And Shock Waves, 2008, 28(3): 243-251. doi: 10.11883/1001-1455(2008)03-0243-09
  • Cited by

    Periodical cited type(16)

    1. 左宇军,胡赏,林健云,潘超,孙文吉斌,陈斌,陈庆港,荣鹏. 黔西南金矿砂岩动静组合加载岩石力学特性研究. 贵州大学学报(自然科学版). 2024(02): 1-8 .
    2. 解北京,栾铮,李晓旭,张景顺,于瑞星,丁浩. 三维动静加载下煤的本构模型及卸荷破坏特征. 哈尔滨工业大学学报. 2024(04): 61-72 .
    3. 陈彪,赵伏军,田芯宇. 冲击荷载下裂隙砂岩能量耗散及分形特征研究. 中国矿山工程. 2024(02): 39-47 .
    4. 焦振华,杨利文,袁安营,倪志辉,马家宝. 含钻孔煤样动态力学特性试验与数值模拟研究. 中国安全生产科学技术. 2024(12): 57-66 .
    5. 龙尧,张同文,张家生,肖源杰. 红砂岩粗粒土动力试验及颗粒破碎模型研究. 振动与冲击. 2023(03): 270-279 .
    6. 金解放,廖占象,杨益,徐虹,赵奎. 冲击荷载对具有轴向静应力红砂岩应力波传播速度的影响特性. 有色金属科学与工程. 2023(01): 107-117 .
    7. 方士正,李炜煜,杨阳,陈程,许鹏. 静水压状态下深部岩石动态压缩力学行为及能量耗散特征试验研究. 振动与冲击. 2023(06): 280-288 .
    8. 王爱文,孙郑齐,潘一山,范德威,李超,于新河,王岗,卢闯. 梯度围岩结构应力波透射模型与传播衰减规律. 煤炭学报. 2023(05): 1969-1984 .
    9. 谭彬,徐虹,金解放,余雄. 动载荷和含水率对红砂岩动态强度和变形的影响. 矿业研究与开发. 2023(09): 164-171 .
    10. 方士正,杨仁树,李炜煜,李永亮,陈骏. 非静水压条件下深部岩石能量耗散规律及破坏特征试验研究. 煤炭科学技术. 2023(10): 83-96 .
    11. 宋战平,刘洪珂,郑方,程昀,孙引浩,宋婉雪. 考虑层理倾角的硬质砂岩力学行为及破裂响应特征. 煤田地质与勘探. 2023(12): 167-175 .
    12. 张慧梅,陈世官,王磊,程树范,杨更社,申艳军. 扰动冲击下弱胶结红砂岩的能量耗散与分形特征. 岩土工程学报. 2022(04): 622-631 .
    13. 徐长锋,周友行,肖加其,李昱泽,易倩. 长径比和应变率对海泡石的破碎能耗影响研究. 材料导报. 2022(S1): 157-161 .
    14. 刘雅弟,汪海波,李娜,吕闹,魏梦杰. 动载作用下玻璃纤维增强复合材料管砂浆能量耗散分析. 科学技术与工程. 2022(29): 13004-13012 .
    15. 金解放,杨益,廖占象,余雄,钟依禄. 动荷载与地应力对岩石响应特性的影响试验研究. 岩石力学与工程学报. 2021(10): 1990-2002 .
    16. 陈品崟,赵伏军,陈彪,田芯宇. 冲击载荷下裂隙岩体破碎能量耗散特征. 矿业工程研究. 2021(03): 17-23 .

    Other cited types(21)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (3887) PDF downloads(97) Cited by(37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return