WANG Shunli, WU Yun, JIN Di, GUO Shanguang, ZHONG Yepan, YANG Xingkui. Effects of nozzles on performance of rotating detonation at different equivalence ratios[J]. Explosion And Shock Waves, 2020, 40(10): 102102. doi: 10.11883/bzycj-2019-0481
Citation: WANG Shunli, WU Yun, JIN Di, GUO Shanguang, ZHONG Yepan, YANG Xingkui. Effects of nozzles on performance of rotating detonation at different equivalence ratios[J]. Explosion And Shock Waves, 2020, 40(10): 102102. doi: 10.11883/bzycj-2019-0481

Effects of nozzles on performance of rotating detonation at different equivalence ratios

doi: 10.11883/bzycj-2019-0481
  • Received Date: 2019-12-27
  • Rev Recd Date: 2020-06-11
  • Available Online: 2020-08-25
  • Publish Date: 2020-10-05
  • The impact of nozzle configuration on the performance of rotating detonation with different equivalence ratios was studied through tests on rotating detonating engines (RDEs) without a nozzle and with a convergent nozzle, a divergent nozzle and a convergent-divergent nozzle, respectively. Pre-combustion cracked kerosene and 30% oxygen-enriched air were used as the fuel and oxidizer, respectively. The results show that the rotating detonation engines can operate smoothly with the equivalence ratio ranging from 0.73 to 1.30. Three operating modes including single wave, unstable two counter-rotating waves and stable two counter-rotating waves were found in the experiments. The nozzle configurations strongly affect the mode transition and the detonation wave velocity. The convergent nozzle and the convergent-divergent nozzle can promote the generation of new detonation waves, making the working modes mainly to be two counter-rotating waves, while the detonation mainly operates in the single wave mode with a divergent nozzle installed. The results further show that the maximum propagating velocity deviates from the stoichiometric ratio when the convergent or convergent-divergent nozzles are installed, and the convergent-divergent nozzle can increase the detonation wave velocity.
  • [1]
    VOITSEKHOVSKⅡ B V. Maintained detonations [J]. Soviet Physics Doklady, 1960, 4(6): 1207–1209.
    [2]
    BYKOVSKⅡ F A, MITROFANOV V V. Detonation combustion of a gas mixture in a cylindrical chamber [J]. Combustion, Explosion and Shock Waves, 1980, 16(5): 570–578. DOI: 10.1007/BF00794937.
    [3]
    BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Spin detonation of fuel-air mixtures in a cylindrical combustor [J]. Doklady Physics, 2005, 50(1): 56–58. DOI: 10.1134/1.1862376.
    [4]
    BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonations [J]. Journal of Propulsion and Power, 2006, 22(6): 1204–1216. DOI: 10.2514/1.17656.
    [5]
    BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of hydrogen-oxygen mixtures: 1: annular cylindrical combustors [J]. Combustion, Explosion, and Shock Waves, 2008, 44(2): 150–162. DOI: 10.1007/s10573-008-0021-1.
    [6]
    BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of hydrogen-oxygen mixtures: 2: combustor with an expanding annular channel [J]. Combustion, Explosion, and Shock Waves, 2008, 44(3): 330–342. DOI: 10.1007/s10573-008-0041-x.
    [7]
    LU F K, BRAUN E M. Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts [J]. Journal of Propulsion and Power, 2014, 30(5): 1125–1142. DOI: 10.2514/1.B34802.
    [8]
    WOLAŃSKI P. Detonative propulsion [J]. Proceedings of the Combustion Institute, 2013, 34(1): 125–158. DOI: 10.1016/j.proci.2012.10.005.
    [9]
    SHAO Y T, LIU M, WANG J P. Continuous detonation engine and effects of different types of nozzle on its propulsion performance [J]. Chinese Journal of Aeronautics, 2010, 23(6): 647–652. DOI: 10.1016/s1000-9361(09)60266-1.
    [10]
    YI T H, LOU J, TURANGAN C, et al. Effect of nozzle shapes on the performance of continuously-rotating detonation engine [C] // Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2010. DOI: 10.2514/6.2010-152.
    [11]
    JOURDAINE N, TSUBOI N, OZAWA K, et al. Three-dimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3443–3451. DOI: 10.1016/j.proci.2018.09.024.
    [12]
    KATO Y, ISHIHARA K, MATSUOKA K, et al. Study of combustion chamber characteristic length in rotating detonation engine with convergent-divergent nozzle [C] // Proceedings of the 54th AIAA Aerospace Sciences Meeting. San Diego: AIAA, 2016. DOI: 10.2514/6.2016-1406.
    [13]
    高剑, 马虎, 裴晨曦, 等. 喷管对旋转爆震发动机性能影响的实验 [J]. 航空动力学报, 2016, 31(10): 2443–2453. DOI: 10.13224/j.cnki.jasp.2016.10.018.

    GAO J, MA H, PEI C X, et al. Experiment of effect of nozzle shapes on the performance of rotating detonation engine [J]. Journal of Aerospace Power, 2016, 31(10): 2443–2453. DOI: 10.13224/j.cnki.jasp.2016.10.018.
    [14]
    FOTIA M, KAEMMING T A, CODONI J R, et al. Experimental thrust sensitivity of a rotating detonation engine to various aerospike plug-nozzle configurations [C] // Proceedings of AIAA Scitech 2019 Forum. San Diego: AIAA, 2019. DOI: 10.2514/6.2019-1743.
    [15]
    RANKIN B A, HOKE J, SCHAUER F. Periodic exhaust flow through a converging-diverging nozzle downstream of a rotating detonation engine [C] // Proceedings of the 52nd Aerospace Sciences Meeting. National Harbor: AIAA, 2014. DOI: 10.2514/6.2014-1015.
    [16]
    SONG F L, WU Y, XU S D, et al. Pre-combustion cracking characteristics of kerosene [J]. Chemical Physics Letters, 2019, 737: 136812. DOI: 10.1016/j.cplett.2019.136812.
    [17]
    SONG F L, WU Y, XU S D, et al. Effects of refueling position and residence time on pre-combustion cracking characteristic of aviation kerosene RP-3 [J]. Fuel, 2020, 270: 117548. DOI: 10.1016/j.fuel.2020.117548.
    [18]
    BLUEMNER R, BOHON M, PASCHEREIT C O, et al. Dynamics of counter-rotating wave modes in an RDC [C] // Proceedings of 2018 Joint Propulsion Conference. Cincinnati: AIAA, 2018. DOI: 10.2514/6.2018-4572.
    [19]
    刘世杰, 林志勇, 刘卫东, 等. 连续旋转爆震波传播过程研究:Ⅱ: 双波对撞传播模式 [J]. 推进技术, 2014, 35(2): 269–275. DOI: 10.13675/j.cnki.tjjs.2014.02.031.

    LIU S J, LIN Z Y, LIU W D, et al. Research on continuous rotating detonation wave propagation process: Ⅱ: two-wave collision propagation mode [J]. Journal of Propulsion Technology, 2014, 35(2): 269–275. DOI: 10.13675/j.cnki.tjjs.2014.02.031.
    [20]
    DENG L, MA H, XU C, et al. The feasibility of mode control in rotating detonation engine [J]. Applied Thermal Engineering, 2018, 129: 1538–1550. DOI: 10.1016/j.applthermaleng.2017.10.146.
    [21]
    ZHONG Y P, WU Y, JIN D, et al. Investigation of rotating detonation fueled by the pre-combustion cracked kerosene [J]. Aerospace Science and Technology, 2019, 95: 105480. DOI: 10.1016/j.ast.2019.105480.
  • Cited by

    Periodical cited type(7)

    1. 高文佳,白桥栋,韩家祥,邱晗,刘嘱勇,翁春生. 当量比对富氢燃气旋转爆轰自起爆传播特性的影响. 弹道学报. 2025(01): 9-19+53 .
    2. 刘事成,高春雨,周胜兵. 非均匀当量比对旋转爆震燃烧室性能影响的三维数值模拟研究. 爆炸与冲击. 2024(05): 56-73 . 本站查看
    3. 韩家祥,白桥栋,邱晗,郑权,翁春生. 燃烧室结构对煤油预燃裂解气旋转爆轰特性的影响. 兵工学报. 2024(08): 2837-2850 .
    4. 杨帆,姜春雪,王宇辉,李世全,王健平,张国庆. 煤油液滴直径对两相旋转爆轰发动机流场的影响. 爆炸与冲击. 2023(02): 3-17 . 本站查看
    5. 鞠美娜,袁成,曹军伟. 旋转爆震发动机研究进展综述. 航空科学技术. 2023(03): 1-9 .
    6. 葛高杨,马虎,夏镇娟,马元,侯世卓,邓利,周长省. 环缝宽度对两相旋转爆轰波压力与频率特性影响实验研究. 推进技术. 2022(08): 200-210 .
    7. Jia-xiang Han,Qiao-dong Bai,Shi-jian Zhang,Fang Wang,Chun-sheng Weng. Experimental study on propagation characteristics of rotating detonation wave with kerosene fuel-rich gas. Defence Technology. 2022(08): 1498-1512 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(1)

    Article Metrics

    Article views (3531) PDF downloads(69) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return