SUN Xiaowang, TAO Xiaoxiao, WANG Xianhui, LI Jinjun, WANG Lihui. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material[J]. Explosion And Shock Waves, 2020, 40(9): 095101. doi: 10.11883/bzycj-2020-0011
Citation: SUN Xiaowang, TAO Xiaoxiao, WANG Xianhui, LI Jinjun, WANG Lihui. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material[J]. Explosion And Shock Waves, 2020, 40(9): 095101. doi: 10.11883/bzycj-2020-0011

Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material

doi: 10.11883/bzycj-2020-0011
  • Received Date: 2020-01-13
  • Rev Recd Date: 2020-06-05
  • Publish Date: 2020-09-01
  • In order to study in depth the structural response of the bottom protective component of the vehicles under blast loading and improve the blast resistant performance of the protective vehicles, a finite element model of the bottom protective component of a vehicle under blast loading was established, and the reliability of the finite element simulation was verified by the explosion impact bench test; the concave hexagonal negative Poisson’s ratio honeycomb material was used as the core layer of the protective component, the deformation mode of the negative Poisson’s ratio honeycomb material under blast loading was analyzed, and the blast resistant performance was compared with the other three protective components of the same mass. The results show that the protective component containing negative Poisson’s ratio honeycomb core has better resistance to blast loading. A mathematical model was established for multi-objective optimization problems with the cell size parameters of the honeycomb material as design variables, and the multi-objective genetic algorithm was used to obtain the optimal solution of the cell geometric parameters, which effectively reduces the maximum deflection and maximum kinetic energy of the protective component substrate.
  • [1]
    李补莲, 原树兴. 现代军用车辆的防护措施 [J]. 国外坦克, 2011(5): 41–43. DOI: CNKI:SUN:GWTK.0.2011-05-019.

    LI B L, YUAN S X. Protective measures of modern military vehicles [J]. Foreign Tanks, 2011(5): 41–43. DOI: CNKI:SUN:GWTK.0.2011-05-019.
    [2]
    IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. DOI: 10.1016/j.compstruct.2017.03.018.
    [3]
    LI X, ZHANG P, WANG Z, et al. Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis [J]. Composite Structures, 2014, 108: 1001–1008. DOI: 10.1016/j.compstruct.2013.10.034.
    [4]
    周冠. 新型负泊松比结构关键技术研究及其在车身设计中的应用[D]. 长沙: 湖南大学, 2015: 6−7.
    [5]
    QIAO J, CHEN C Q. Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs [J]. Journal of Applied Mechanics, 2015, 82(5): 051007. DOI: 10.1115/1.4030007.
    [6]
    ZHOU G, MA Z D, GU J, et al. Design optimization of a NPR structure based on HAM optimization method [J]. Structural and Multidisciplinary Optimization, 2016, 53(3): 635–643. DOI: 10.1007/s00158-015-1341-x.
    [7]
    杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究 [J]. 爆炸与冲击, 2019, 39(6): 124–135. DOI: 10.11883/bjycj-2018-0060.

    YANG D Q, WU B H, ZHANG X W. Explosion and impact resistance of star negative Poisson’s ratio metamaterial protective structure [J]. Explosion and Shock Waves, 2019, 39(6): 124–135. DOI: 10.11883/bjycj-2018-0060.
    [8]
    裴连政. 负泊松比夹芯板抗爆性能实验与仿真研究[D]. 大连: 大连理工大学, 2016: 11−34.
    [9]
    LAN X K, FENG S S, HUANG Q, et al. A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores [J]. Aerospace Science and Technology, 2019, 87: 37–47. DOI: 10.1016/j.ast.2019.01.031.
    [10]
    JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B: Engineering, 2016, 106: 206–217. DOI: 10.1016/j.compositesb.2016.09.037.
    [11]
    魏然. 爆炸冲击下车身结构防护机理及多学科优化研究[D]. 南京: 南京理工大学, 2019: 3−4.
    [12]
    王陶. 负泊松比结构力学特性研究及其在商用车耐撞性优化设计中的应用[D]. 南京: 南京理工大学, 2018: 21−22.
    [13]
    ZHOU G, MA Z D, LI G, et al. Design optimization of a novel NPR crash box based on multi-objective genetic algorithm [J]. Structural and Multidisciplinary Optimization, 2016, 54(3): 673–684. DOI: 10.1007/s00158-016-1452-z.
    [14]
    韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性 [J]. 爆炸与冲击, 2019, 39(1): 47–57. DOI: 10.11883/bzycj-2017-0281.

    HAN H L, ZHANG X C, WANG P. Dynamic response and energy absorption characteristics of negative Poisson’s ratio honeycomb materials [J]. Explosion and Shock Waves, 2019, 39(1): 47–57. DOI: 10.11883/bzycj-2017-0281.
    [15]
    田永军, 段国林, 夏晓光, 等. 响应面模型与混合优化算法相结合的锯片参数优化设计 [J]. 中国机械工程, 2016, 27(22): 3025–3031. DOI: 10.3969/j.issn.1004-132X.2016.22.008.

    TIAN Y J, DUAN G L, XIA X G, et al. Optimization design of saw blade parameters based on response surface model and hybrid optimization algorithm [J]. China Mechanical Engineering, 2016, 27(22): 3025–3031. DOI: 10.3969/j.issn.1004-132X.2016.22.008.
    [16]
    SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization [J]. AIAA Journal, 2001, 39(12): 2233–2241. DOI: 10.2514/2.1234.
    [17]
    任朋飞. 抗冲击型车身柔性底部结构防护技术研究[D]. 南京: 南京理工大学, 2018: 54−55.
    [18]
    詹长书, 王清. 基于改进遗传算法电动汽车变速器参数设计与优化 [J]. 重庆理工大学学报(自然科学版), 2020, 34(2): 1–5. DOI: 10.3969/j.issn.1674-8425(z).2020.02.001.

    ZHAN C S, WANG Q. Design and optimization of transmission parameters of electric vehicle based on improved genetic algotithm [J]. Journal of Chongqing Institute of Technology (Natural Science), 2020, 34(2): 1–5. DOI: 10.3969/j.issn.1674-8425(z).2020.02.001.
  • Cited by

    Periodical cited type(14)

    1. 沈鲁豫,温垚珂,董方栋,覃彬,徐浩然. TPU材料负泊松比结构缓冲性能研究. 兵器装备工程学报. 2024(02): 291-299 .
    2. 贺锋,梁一鸣,秦海,李季,高超,刘三丰. 负泊松比结构的工程应用现状及展望. 防护工程. 2024(01): 68-78 .
    3. 蒋舟顺,徐峰祥,邹震,周谦谋. 爆炸载荷下正弦曲边三维负泊松比夹芯板的动态响应和吸能特性. 爆炸与冲击. 2024(02): 3-20 . 本站查看
    4. 张旭,王子沱,李伟. 基于静态凝聚法的蜂窝芯轴向变胞元非均匀排布优化. 应用力学学报. 2024(03): 557-566 .
    5. 贺锋,梁一鸣,李季,高超,慕孟,白家琦,祁少博. 异型陶瓷负泊松比复合结构的防弹防爆性能数值模拟研究. 安全与环境学报. 2024(08): 2919-2928 .
    6. 孔祥清,李若男,常雅慧,付莹. 泡沫填充负泊松比蜂窝夹层结构的抗爆性能数值模拟. 兵工学报. 2024(09): 3091-3104 .
    7. 时圣波,王韧之,唐佳宾,甘云丹,袁建飞,陈勇. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性. 爆炸与冲击. 2023(06): 39-53 . 本站查看
    8. 崔飞蝶,董焱章,李青峰. 多型负泊松比材料-结构协同设计. 湖北汽车工业学院学报. 2023(04): 64-69+75 .
    9. 赵雨薇,张宏伟,孙晓旺,王显会. 爆炸载荷下负泊松比下肢保护装置参数分析. 兵器装备工程学报. 2022(03): 60-66+106 .
    10. 孙魁远,孙晓旺,张宏伟,王显会,彭兵,张绍彦. 厚度梯度型负泊松比蜂窝抗爆炸特性及优化. 兵器装备工程学报. 2022(04): 190-197 .
    11. 赵颖,王凯锋,施劲余,桑叶,李云伍,陈宇,殷举伞. 微元胞缺失下三星型微结构面内动态性能分析. 振动与冲击. 2022(10): 115-123+185 .
    12. 魏子涵,赵振宇,叶帆,裴轶群,王昕,张钱城,卢天健. 金属蜂窝夹层结构抗水下爆炸特性. 爆炸与冲击. 2021(08): 61-77 . 本站查看
    13. 沙康康,王显会,郭峤,彭兵,孙晓旺. 某型扫雷辊在爆炸环境下的仿真与试验研究. 科学技术与工程. 2021(25): 10576-10581 .
    14. 乔及森,李明,苗红丽. 串联梯度蜂窝结构的面内力学性能. 塑性工程学报. 2021(11): 115-123 .

    Other cited types(26)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(7)

    Article Metrics

    Article views (3493) PDF downloads(132) Cited by(40)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return