Volume 40 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
GUO Ruiqi, REN Huiqi, LONG Zhilin, WU Xiangyun, JIANG Xiquan. Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models[J]. Explosion And Shock Waves, 2020, 40(9): 093101. doi: 10.11883/bzycj-2020-0015
Citation: GUO Ruiqi, REN Huiqi, LONG Zhilin, WU Xiangyun, JIANG Xiquan. Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models[J]. Explosion And Shock Waves, 2020, 40(9): 093101. doi: 10.11883/bzycj-2020-0015

Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models

doi: 10.11883/bzycj-2020-0015
  • Received Date: 2020-01-07
  • Rev Recd Date: 2020-04-01
  • Available Online: 2020-08-25
  • Publish Date: 2020-09-01
  • Research of concrete materials subjected to tensile stress wave at high strain rates is currently based on splitting experiments and spalling experiments with a split Hopkinson pressure bar device, however, they are not appropriate to study the stress-strain relationship of concrete materials subjected to one dimensional tensile stress wave. Therefore, the large diameter split Hopkinson tensile bar (SHTB) is urgently needed to perform direct dynamic tensile study of concrete materials. Mechanical analysis of a new type of SHTB apparatus was performed in numerical simulation method, then corresponding incident tensile stress wave was studied and optimize improvement measures for partial components were also proposed. The partly improved SHTB apparatus reconciled the demands of glued connect mode, hooked connect mode and so on. At last, concrete was considered as a two-phase composite material which composed of coarse aggregates and cement matrix, the annulus three-dimensional concrete aggregate model was established and applied to SHTB simulation experiment. The comparison between numerical simulation results and experimental results verified the effectiveness of partly improved SHTB apparatus, which also provided research directions for dynamic tensile responses of mesoscopic concrete model.
  • loading
  • [1]
    KHOSRAVANI M R, WEINBERG K. A review on split Hopkinson bar experiments on the dynamic characterisation of concrete [J]. Construction and Building Materials, 2018, 190: 1264–1283. DOI: 10.1016/j.conbuildmat.2018.09.187.
    [2]
    郭瑞奇, 任辉启, 张磊, 等. 分离式大直径Hopkinson杆实验技术研究进展 [J]. 兵工学报, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.

    GUO R Q, REN H Q, ZHANG L, et al. Research progress of large-diameter split Hopkinson bar experimental technique [J]. Acta Armamentarii, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.
    [3]
    LAMBERT D E, ROSS C A. Strain rate effects on dynamic fracture and strength [J]. International Journal of Impact Engineering, 2000, 24(10): 985–998. DOI: 10.1016/S0734-743X(00)00027-0.
    [4]
    FENG W H, LIU F, YANG F, et al. Experimental study on dynamic split tensile properties of rubber concrete [J]. Construction and Building Materials, 2018, 165: 675–687. DOI: 10.1016/j.conbuildmat.2018.01.073.
    [5]
    曹海, 马芹永. 预制与后浇混凝土粘结后的动态劈拉性能 [J]. 建筑材料学报, 2018, 21(1): 150–153;164. DOI: 10.3969/j.issn.1007-9629.2018.01.024.

    CAO H, MA Q Y. Dynamic splitting tensile performance of post pouring concrete adhered on precast concrete [J]. Journal of Building Materials, 2018, 21(1): 150–153;164. DOI: 10.3969/j.issn.1007-9629.2018.01.024.
    [6]
    CHEN X D, GE L M, ZHOU J K, et al. Dynamic Brazilian test of concrete using split Hopkinson pressure bar [J]. Materials and Structures, 2017, 50(1): 1. DOI: 10.1617/s11527-016-0885-6.
    [7]
    胡时胜, 张磊, 武海军, 等. 混凝土材料层裂强度的实验研究 [J]. 工程力学, 2004, 21(4): 128–132. DOI: 10.3969/j.issn.1000-4750.2004.04.023.

    HU S S, ZHANG L, WU H J, et al. Experimental study on spalling strength of concrete [J]. Engineering Mechanics, 2004, 21(4): 128–132. DOI: 10.3969/j.issn.1000-4750.2004.04.023.
    [8]
    张磊, 胡时胜. 混凝土层裂强度测量的新方法 [J]. 爆炸与冲击, 2006, 26(6): 537–542. DOI: 10.11883/1001-1455(2006)06-0537-06.

    ZHANG L, HU S S. A novel experimental technique to determine the spalling strength of concretes [J]. Explosion and Shock Waves, 2006, 26(6): 537–542. DOI: 10.11883/1001-1455(2006)06-0537-06.
    [9]
    WU H J, ZHANG Q M, HUANG F L, et al. Experimental and numerical investigation on the dynamic tensile strength of concrete [J]. International Journal of Impact Engineering, 2005, 32(1-4): 605–617. DOI: 10.1016/j.ijimpeng.2005.05.008.
    [10]
    俞鑫炉, 付应乾, 董新龙, 等. 混凝土一维应力层裂实验的全场DIC分析 [J]. 力学学报, 2019, 51(4): 1064–1072. DOI: 10.6052/0459-1879-19-008.

    YU X L, FU Y Q, DONG X L, et al. Full field DIC analysis of one-dimensional spall strength for concrete [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1064–1072. DOI: 10.6052/0459-1879-19-008.
    [11]
    巫绪涛, 代仁强, 陈德兴, 等. 钢纤维混凝土动态劈裂试验的能量耗散分析 [J]. 应用力学学报, 2009, 26(1): 151–154. DOI: 1000-4939(2009)01-0151-04.

    WU X T, DAI R Q, CHEN D X, et al. Energy dissipation analysis on dynamic splitting-tensile test of steel fiber reinforced concrete [J]. Chinese Journal of Applied Mechanics, 2009, 26(1): 151–154. DOI: 1000-4939(2009)01-0151-04.
    [12]
    张磊,胡时胜,陈德兴,等. 混凝土材料的层裂特性 [J]. 爆炸与冲击, 2008, 28(3): 193–199. DOI: 10.11883/1001-1455(2008)03-0193-07.

    ZHANG L, HU S S, CHEN D X, et al. Spall characteristics of concrete materials [J]. Explosion and Shock Waves, 2008, 28(3): 193–199. DOI: 10.11883/1001-1455(2008)03-0193-07.
    [13]
    张凯, 陈荣刚, 张威, 等. 混凝土动态直接拉伸实验技术研究 [J]. 实验力学, 2014, 29(1): 89–96. DOI: 10.7520/1001-4888-13-064.

    ZHANG K, CHEN R G, ZHANG W, et al. Study of experimental technique for concrete dynamic direct tension [J]. Journal of Experimental Mechanics, 2014, 29(1): 89–96. DOI: 10.7520/1001-4888-13-064.
    [14]
    LEVI-HEVRONI D, KOCHAVI E, KOFMAN B, et al. Experimental and numerical investigation on the dynamic increase factor of tensile strength in concrete [J]. International Journal of Impact Engineering, 2018, 114: 93–104. DOI: 10.1016/j.ijimpeng.2017.12.006.
    [15]
    姜锡权, 徐可立, 方文敏, 等. 新型分离式霍普金森拉杆装置: CN201310044304.3 [P]. 2013-05-08.
    [16]
    王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017.
    [17]
    郭瑞奇, 任辉启, 张磊, 等. 基于混凝土细观骨料模型的SHPB仿真模拟研究 [J]. 振动与冲击, 2019, 38(22): 107–116. DOI: 10.13465/j.cnki.jvs.2019.22.015.

    GUO R Q, REN H Q, ZHANG L, et al. Simulation for SHPB tests based on a mesoscopic concrete aggregate model [J]. Journal of Vibration and Shock, 2019, 38(22): 107–116. DOI: 10.13465/j.cnki.jvs.2019.22.015.
    [18]
    崔堃鹏, 夏超逸, 刘炎海, 等. 高速铁路桥墩汽车撞击力的数值模拟与特性分析 [J]. 桥梁建设, 2013, 43(6): 57–63. DOI: 1003-4722(2013)06-0057-07.

    CUI K P, XIA C Y, LIU Y H, et al. Numerical simulation and characteristic analysis of vehicle collision forces in high-speed railway bridge pier [J]. Bridge Construction, 2013, 43(6): 57–63. DOI: 1003-4722(2013)06-0057-07.
    [19]
    韩志伟, 周红杰, 李春, 等. 海上风力机与船舶碰撞的动力响应及防碰装置 [J]. 中国机械工程, 2019, 30(12): 1387–1394. DOI: 10.3969/j.issn.1004-132X.2019.12.001.

    HAN Z W, ZHOU H J, LI C, et al. Dynamic response and anti collision devices of an offshore wind turbine subjected to ship impacts [J]. China Mechanical Engineering, 2019, 30(12): 1387–1394. DOI: 10.3969/j.issn.1004-132X.2019.12.001.
    [20]
    王礼立. 应力波基础[M].2版.北京: 国防工业出版社, 2005.
    [21]
    果春焕, 周培俊, 陆子川, 等. 波形整形技术在Hopkinson杆实验中的应用 [J]. 爆炸与冲击, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.

    GUO C H, ZHOU P J, LU Z C, et al. Application of pulse shaping technique in Hopkinson bar experiments [J]. Explosion and Shock Waves, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.
    [22]
    江德斐, 林国标, 舒大禹, 等. T2铜的动态力学性能及本构关系 [J]. 中国有色金属学报, 2016, 26(7): 1437–1443. DOI: 1004-0609(2016)-07-1437-07.

    JIANG D F, LIN G B, SHU D Y, et al. Dynamic mechanical property and constitutive relation of T2 copper [J]. Chinese Journal of Nonferrous Metals, 2016, 26(7): 1437–1443. DOI: 1004-0609(2016)-07-1437-07.
    [23]
    ZHANG M, WU H J, LI Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests: part I: experiments [J]. International Journal of Impact Engineering, 2009, 36(12): 1327–1334. DOI: 10.1016/j.ijimpeng.2009.04.009.
    [24]
    LI Q M, LU Y B, MENG H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests: part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(12): 1335–1345. DOI: 10.1016/j.ijimpeng.2009.04.010.
    [25]
    ZHANG S, LU Y B, JIANG X Q, et al. Inertial effect on concrete-like materials under dynamic direct tension [J]. International Journal of Protective Structures, 2018, 9(3): 377–396. DOI: 10.1177/2041419618766156.
    [26]
    金浏, 杜修力. 加载速率对混凝土拉伸破坏行为影响的细观数值分析 [J]. 工程力学, 2015, 32(8): 42–49. DOI: 10.6052/j.issn.1000-4750.2013.08.0791.

    JIN L, DU X L. Meso-scale numerical analysis of the effect of loading rate on the tensile failure behavior of concrete [J]. Engineering Mechanics, 2015, 32(8): 42–49. DOI: 10.6052/j.issn.1000-4750.2013.08.0791.
    [27]
    吴成, 沈晓军, 王晓鸣, 等. 细观混凝土靶抗侵彻数值模拟及侵彻深度模型 [J]. 爆炸与冲击, 2018, 38(6): 1364–1371. DOI: 10.11883/bzycj-2017-0123.

    WU C, SHEN X J, WANG X M, et al. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target [J]. Explosion and Shock Waves, 2018, 38(6): 1364–1371. DOI: 10.11883/bzycj-2017-0123.
    [28]
    邓勇军, 陈小伟, 姚勇, 等. 基于细观混凝土模型的刚性弹体正侵彻弹道偏转分析 [J]. 爆炸与冲击, 2017, 37(3): 377–386. DOI: 10.11883/1001-1455(2017)03-0377-10.

    DENG Y J, CHEN X W, YAO Y, et al. On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model [J]. Explosion and Shock Waves, 2017, 37(3): 377–386. DOI: 10.11883/1001-1455(2017)03-0377-10.
    [29]
    郭瑞奇. 三维混凝土骨料模型的p型自适应有限元及其快速求解算法[D]. 湘潭: 湘潭大学, 2017.
    [30]
    CHEN G, HAO Y F, HAO H. 3D meso-scale modelling of concrete material in spall tests [J]. Materials and Structures, 2015, 48(6): 1887–1899. DOI: 10.1617/s11527-014-0281-z.
    [31]
    XU Z, HAO H, LI H N. Mesoscale modelling of dynamic tensile behaviour of fibre reinforced concrete with spiral fibres [J]. Cement and Concrete Research, 2012, 42(11): 1475–1493. DOI: 10.1016/j.cemconres.2012.07.006.
    [32]
    MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9-10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [33]
    MALVAR L J, CRAWFORD J E, MORRILL K B. K&C concrete material model release Ⅲ: automated generation of material model input[R]. Karagozian and Case Structural Engineers, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (3009) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return