Volume 40 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
HE Liling, ZHANG Fangju, YAN Yixia, XIE Ruoze, XU Aimin, ZHOU Yanliang. Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes[J]. Explosion And Shock Waves, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046
Citation: HE Liling, ZHANG Fangju, YAN Yixia, XIE Ruoze, XU Aimin, ZHOU Yanliang. Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes[J]. Explosion And Shock Waves, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046

Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes

doi: 10.11883/bzycj-2020-0046
  • Received Date: 2020-02-28
  • Rev Recd Date: 2020-08-25
  • Publish Date: 2020-12-05
  • Ti-6Al-4V is a kind of important alternative material for light-weight design of warhead whose impact-initiated reaction could enhance the damage power of the weapon. However, there is not enough research on the condition and mechanism of its impact-initiated reaction. Through experimental and theoretical analyses, the influences of fracture modes of Ti-6Al-4V structure on impact initiated reaction were studied in the present paper, in order to obtain the condition and mechanism of impact-initiated reaction of Ti-6Al-4V material. Two types of projectiles were designed to normally penetrate the unreinforced concrete target, i.e., the titanium projectile with ogival nose and the composite projectile with C/C nose and hollow titanium cylinder. The impact velocity followed between 222 m/s and 1008 m/s. Two projectiles exhibit different fracture modes. In the studied velocity range, there is an impact-initiated reaction during penetration for the titanium projectile, but no reaction is observed during the impact of the composite projectile. The fracture modes of the two projectiles were analyzed in the macroscopic and microscopic views. After penetration, the structure of the titanium projectile is almost intact. Only abrasion is observed on the outer-surface of the projectile. The main failure mode for abrasion is the shear deformation of its microstructure, which induces fragments with lengths in micrometers or hundreds of micrometers. The number of fragments could be up to 3 millions. For the hollow titanium cylinder in the composite projectile, it is teared up into large fragments, whose dimensions are in millimeters. The tearing surface develops along the shear band. The largest number of fragments is almost 120. Further analyses indicate that the efficiency of oxygen and heat supply is reverse proportional to the size of the fragment. Under certain oxygen and heat supply, the necessary condition to initiate the impact reaction of Ti-6Al-4V is that the size of fragments should be small enough. This must be the essential reason for the impact reaction in an ogival titanium projectile and no reaction in a composite projectile during penetration. With the necessary condition to initiate the impact reaction, the greater the number of fragments, the higher the impact reaction intensity is.
  • loading
  • [1]
    MARTINEZ F, ESQUIVEL E V, LOPEZ M I, et al. Adiabatic shear bands associated with plug formation and penetration in Ti-6Al-4V targets: formation, structure, and performance: a preliminary study [C] // HOWARD S M, STEPHENS R L, NEWMAN C J, et al. EPD 2006 Congress, USA: The Minerals, Metals & Materials Society, 2006: 137−142.
    [2]
    胡八一, 董庆东, 韩长生, 等. TC4钛合金自然破片的引燃机理分析 [J]. 爆炸与冲击, 1995, 15(3): 254–258.

    HU B Y, DONG Q D, HAN C S, et al. Analysis of the firing mechanics for Ti-6Al-4V natural fragments [J]. Explosion and Shock Waves, 1995, 15(3): 254–258.
    [3]
    张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.

    ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
    [4]
    WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004.
    [5]
    张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.

    ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.
    [6]
    REN H L, LIU X J, NING J G. Impact-initiated behavior and reaction mechanism of W/Zr composites with SHPB setup [J]. AIP Advances, 2016, 6(11): 115205. DOI: 10.1063/1.4967340.
    [7]
    HUANG C M, LI S, BAI S X. Quasi-static and impact-initiated response of Zr55Ni5Al10Cu30 alloy [J]. Journal of Non-Crystalline Solids, 2018, 481: 59–64. DOI: 10.1016/j.jnoncrysol.2017.10.011.
    [8]
    LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials & Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107.
    [9]
    WANG Y, JIANG W, ZHANG X F, et al. Energy release characteristics of impact-initiated energetic aluminum-magnesium mechanical alloy particles with nanometer-scale structure [J]. Thermochimica Acta, 2011, 512(1-2): 233–239. DOI: 10.1016/j.tca.2010.10.013.
    [10]
    张云峰, 罗兴柏, 刘国庆, 等. W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶的侵彻释能特性 [J]. 爆炸与冲击, 2020, 40(2): 023301. DOI: 10.11883/bzycj-2019-0065.

    ZHANG Y F, LUO X B, LIU G Q, et al. Penetration and energy release effect of W/ZrNiAlCu metastable reactive alloy composite fragment against RHA target [J]. Explosion and Shock Waves, 2020, 40(2): 023301. DOI: 10.11883/bzycj-2019-0065.
    [11]
    WANG H F, ZHENG Y F, YU Q B, et al. Impact-induced initiation and energy release behavior of reactive materials [J]. Journal of Applied Physics, 2011, 110(7): 074904. DOI: 10.1063/1.3644974.
    [12]
    刘俊晓, 任会兰, 宁建国. 不同配比W/Zr活性材料冲击反应实验研究 [J]. 材料工程, 2017, 45(4): 77–83. DOI: 10.11868/j.issn.1001-4381.2016.001212.

    LIU J X, REN H L, NING J G. Experimental study on impact response of W/Zr reactive materials with different proportions [J]. Journal of Materials Engineering, 2017, 45(4): 77–83. DOI: 10.11868/j.issn.1001-4381.2016.001212.
    [13]
    张先锋, 赵晓宁, 乔良. 反应金属冲击反应过程的理论分析 [J]. 爆炸与冲击, 2010, 30(2): 145–151. DOI: 10.11883/1001-1455(2010)02-0145-07.

    ZHANG X F, ZHAO X N, QIAO L. Theory analysis on shock-induced chemical reaction of reactive metal [J]. Explosion and Shock Waves, 2010, 30(2): 145–151. DOI: 10.11883/1001-1455(2010)02-0145-07.
    [14]
    AYDELOTTE B B, THADHANI N N. Mechanistic aspects of impact initiated reactions in explosively consolidated metal+aluminum powder mixtures [J]. Materials Science and Engineering: A, 2013, 570: 164–171. DOI: 10.1016/j.msea.2013.01.054.
    [15]
    张源, 张爱荔, 李惠娟. TC4钛合金的表面氧化及其对疲劳性能的影响 [J]. 钛工业进展, 2010, 27(1): 25–27. DOI: 10.3969/j.issn.1009-9964.2010.01.005.

    ZHANG Y, ZHANG A L, LI H J. Surface oxidation and its effect on the fatigue property of TC4 alloy [J]. Titanium Industry Progress, 2010, 27(1): 25–27. DOI: 10.3969/j.issn.1009-9964.2010.01.005.
    [16]
    赵永庆, 周廉, 邓炬. 钛合金的燃烧产物及形貌 [J]. 兵器材料科学与工程, 1999, 22(6): 19–24.

    ZHAO Y Q, ZHOU L, DENG J. Burn resistant behavior and burn resistant mechanism of Ti40 alloy [J]. Ordnance Material Science and Engineering, 1999, 22(6): 19–24.
    [17]
    王标, 田伟. TC4钛合金燃烧形貌和机理分析 [J]. 燃气涡轮试验与研究, 2013, 26(3): 50–52; 28. DOI: 10.3969/j.issn.1672-2620.2013.03.011.

    WANG B, TIAN W. Combustion morphology and mechanism analysis of titanium alloy TC4 [J]. Gas Turbine Experiment and Research, 2013, 26(3): 50–52; 28. DOI: 10.3969/j.issn.1672-2620.2013.03.011.
    [18]
    隋树山, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000: 65−66.
    [19]
    何丽灵, 陈小伟, 范瑛. 先进钻地弹高速侵彻实验中质量磨蚀金相分析 [J]. 爆炸与冲击, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.

    HE L L, CHEN X W, FAN Y. Metallographic observation of reduced-scale advanced EPW after high-speed penetration [J]. Explosion and Shock Waves, 2012, 32(5): 515–522. DOI: 10.11883/1001-1455(2012)05-0515-08.
    [20]
    HE L L, CHEN X W, WANG Z H. Study on the penetration performance of concept projectile for high-speed penetration (CPHP) [J]. International Journal of Impact Engineering, 2016, 94: 1–12. DOI: 10.1016/j.ijimpeng.2016.03.010.
    [21]
    胡八一, 董庆东, 韩长生, 等. TC4钛合金及40Cr钢破片中绝热剪切带的TEM分析 [J]. 高压物理学报, 1996, 10(1): 37–43. DOI: 10.11858/gywlxb.1996.01.006.

    HU B Y, DONG Q D, HAN C S, et al. TEM observation of shear bands in Ti-6Al-4V and AISI 6140 steel [J]. Chinese Journal of High Pressure Physics, 1996, 10(1): 37–43. DOI: 10.11858/gywlxb.1996.01.006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (1716) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return