Citation: | DU Bing, GUO Yazhou, LI Yulong. A novel technique for determining the dynamic Bauschinger effect by electromagnetic Hopkinson bar[J]. Explosion And Shock Waves, 2020, 40(8): 081101. doi: 10.11883/bzycj-2020-0050 |
[1] |
BAUSCHINGER J. Changes of the elastic limit and the modulus of elasticity on various metals [J]. Zivilingenieur, 1881, 27: 289–348.
|
[2] |
STOLTZ R E, PELLOUX R M. The Bauschinger effect in precipitation strengthened aluminum alloys [J]. Metallurgical Transactions A, 1976, 7(8): 1295–1306. DOI: 10.1007/BF02658814.
|
[3] |
STOUT M G, ROLLETT A D. Large-strain Bauschinger effects in fcc metals and alloys [J]. Metallurgical Transactions A, 1990, 21(12): 3201. DOI: 10.1007/BF02647315.
|
[4] |
FREDERICK C O, ARMSTRONG P J. A mathematical representation of the multiaxial Bauschinger effect [J]. Materials at High Temperatures, 2007, 24(1): 1–26. DOI: 10.3184/096034007X207589.
|
[5] |
BUCKLEY S N, ENTWISTLE K M. The Bauschinger effect in super-pure aluminum single crystals and polycrystals [J]. Acta Metallurgica, 1956, 4(4): 352–361. DOI: 10.1016/0001-6160(56)90023-2.
|
[6] |
ATKINSON J D, BROWN L M, STOBBS W M. The work-hardening of copper-silica: IV: the Bauschinger effect and plastic relaxation [J]. Philosophical Magazine, 1974, 30(6): 1247–1280. DOI: 10.1080/14786437408207280.
|
[7] |
MOAN G D, EMBURY J D. Study of the Bauschinger effect in Al-Cu alloys [J]. Acta Metallurgica, 1979, 27(5): 903–914. DOI: 10.1016/0001-6160(79)90125-1.
|
[8] |
HIDAYETOGLU T K, PICA P N, HAWORTH W L. Aging dependence of the Bauschinger effect in aluminum alloy 2024 [J]. Materials Science and Engineering, 1985, 73: 65–76. DOI: 10.1016/0025-5416(85)90296-4.
|
[9] |
唐长国, 朱金华, 周惠久. 金属材料屈服强度的应变率效应和热激活理论 [J]. 金属学报, 1995, 31(6): 248–253. DOI: 10.1007/BF02943514.
TANG C G, ZHU J H, ZHOU H J. Correlation between yield stress and strain rate for metallic materials and thermal activation approach [J]. Acta Metallrugica Sinica, 1995, 31(6): 248–253. DOI: 10.1007/BF02943514.
|
[10] |
HOPKINSON B. X A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society of London: Series A: containing Papers of a Mathematical or Physical Character, 1914, 213(497-508): 437–456. DOI: 10.1098/rsta.1914.0010.
|
[11] |
MIAO Y, DU B, SHEIKH M Z. On measuring the dynamic elastic modulus for metallic materials using stress wave loading techniques [J]. Archive of Applied Mechanics, 2018, 88(11): 1953–1964. DOI: 10.1007/s00419-018-1422-6.
|
[12] |
MIAO Y, DU B, MA C, et al. Some fundamental problems concerning the measurement accuracy of the Hopkinson tension bar technique [J]. Measurement Science and Technology, 2019, 30(5): 055009. DOI: 10.1088/1361-6501/ab01b5.
|
[13] |
胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 4–20. DOI: 10.11883/1001-1455(2014)06-0641-17.
HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Wave, 2014, 34(6): 4–20. DOI: 10.11883/1001-1455(2014)06-0641-17.
|
[14] |
李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统 [J]. 爆炸与冲击, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.
LI Y L, SUO T, GUO W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar [J]. Explosion and Shock Waves, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.
|
[15] |
李玉龙, 郭伟国. 微型 Hopkinson 杆技术 [J]. 爆炸与冲击, 2006, 26(4): 303–308. DOI: 10.11883/1001-1455(2006)04-0303-06.
LI Y L, GUO W G. Miniature-Hopkinson bar technique [J]. Explosion and Shock Waves, 2006, 26(4): 303–308. DOI: 10.11883/1001-1455(2006)04-0303-06.
|
[16] |
果春焕, 周培俊, 陆子川, 等. 波形整形技术在Hopkinson杆实验中的应用 [J]. 爆炸与冲击, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.
GUO C H, ZHOU P J, LU Z C, et al. Application of pulse shaping technique in Hopkinson bar experiments [J]. Explosion and Shock Waves, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.
|
[17] |
THAKUR A, NEMAT-NASSER S, VECCHIO K S. Dynamic Bauschinger effect [J]. Acta materialia, 1996, 44(7): 2797–2807. DOI: 10.1016/1359-6454(95)00385-1.
|
[18] |
NIE H, SUO T, WU B, et al. A versatile split Hopkinson pressure bar using electromagnetic loading [J]. International Journal of Impact Engineering, 2018, 116: 94–104. DOI: 10.1016/j.ijimpeng.2018.02.002.
|
[19] |
苗应刚, 李玉龙, 邓琼, 等. Investigation on experimental method of low-impedance materials using modified Hopkinson pressure bar [J]. Journal of Beijing Institute of Technology, 2015, 24(2): 269–276. DOI: 10.15918/j.jbit1004-0579.201524.0220.
MIAO Y G, LI Y L, DENG Q, et al. Investigation on experimental method of low-impedance materials using modified Hopkinson pressure bar [J]. Journal of Beijing Institute of Technology, 2015, 24(2): 269–276. DOI: 10.15918/j.jbit1004-0579.201524.0220.
|
[20] |
NIE H, SUO T, SHI X, et al. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators [J]. International Journal of Impact Engineering, 2018, 122: 73–82. DOI: 10.1016/j.ijimpeng.2018.08.004.
|
[21] |
RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar [J]. Journal of the American Ceramic Society, 1994, 77(1): 263–267. DOI: 10.1111/j.1151-2916.1994.tb06987.x.
|
[22] |
FAN X, SUO T, SUN Q, et al. Dynamic mechanical behavior of 6061 Al alloy at elevated temperatures and different strain rates [J]. Acta Mechanica Solida Sinica, 2013, 26(2): 111–120. DOI: 10.1016/S0894-9166(13)60011-7.
|
[1] | ZHANG Xuping, DONG Jinlei, LYU Chao, LUO Binqiang, WANG Guiji, TAN Fuli, ZHAO Jianheng. Mechanical response of NiTi alloys with different initial phase transition temperatures at high strain rates[J]. Explosion And Shock Waves, 2024, 44(5): 053102. doi: 10.11883/bzycj-2023-0257 |
[2] | ZHONG Donghai, GUO Xin, XIONG Xuemei, ZHENG Yuxuan, SONG Li. Direct-impact double-loading Hopkinson bar technique[J]. Explosion And Shock Waves, 2023, 43(4): 044101. doi: 10.11883/bzycj-2022-0210 |
[3] | LIANG Minzu, LU Fangyun, LI Xiangyu, LIN Yuliang, CHEN Rong. An impact expanding ring experimental technology[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2020-0332 |
[4] | ZHAO Sihan, GUO Weiguo, WANG Fan, LI Xinxin, CHEN Longyang, LI Xiaolong, WANG Ruifeng. On a bidirectional bending Hopkinson tension test method[J]. Explosion And Shock Waves, 2021, 41(11): 114101. doi: 10.11883/bzycj-2020-0427 |
[5] | SHU Qi, DONG Xinlong, YU Xinlu. A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar[J]. Explosion And Shock Waves, 2020, 40(8): 084101. doi: 10.11883/bzycj-2019-0433 |
[6] | PAN Hao, WANG Shengtao, WU Zihui, HU Xiaomian. On strength of aluminum under high pressure and high strain rate based on crystal plasticity theory[J]. Explosion And Shock Waves, 2019, 39(2): 023102. doi: 10.11883/bzycj-2018-0084 |
[7] | LIU Yu, XU Zejian, TANG Zhongbin, ZHANG Weiqi, HUANG Fenglei. A high-strain-rate shear testing method based on the DIHPB technique[J]. Explosion And Shock Waves, 2019, 39(10): 104101. doi: 10.11883/bzycj-2018-0301 |
[8] | NIE Hailiang, SHI Xiaopeng, CHEN Chunyang, LI Yulong. Data processing method for bidirectional-load split Hopkinson compression bar[J]. Explosion And Shock Waves, 2018, 38(3): 517-524. doi: 10.11883/bzycj-2017-0361 |
[9] | LI Chenghua, JIANG Zhaoxiu, WANG Beiqiao, ZHANG Zhen, WANG Yonggang. Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading[J]. Explosion And Shock Waves, 2018, 38(4): 707-715. doi: 10.11883/bzycj-2016-0329 |
[10] | ZHANG Weiqi, XU Zejian, SUN Zhongyue, TONG Yi, HUANG Fenglei. Dynamic shear behavior and failure mechanism of Ti-6Al-4V at high strain rates[J]. Explosion And Shock Waves, 2018, 38(5): 1137-1144. doi: 10.11883/bzycj-2017-0107 |
[11] | Li Shunping, Feng Shunshan, Xue Zaiqing, Tu Jian. Mechanical properties of PTFE at high strain rate[J]. Explosion And Shock Waves, 2017, 37(6): 1046-1050. doi: 10.11883/1001-1455(2017)06-1046-05 |
[12] | Guo Zhaoliang, Fan Cheng, Liu Mingtao, Ren Guowu, Tang Tiegang, Liu Cangli. Fracture mode transition in expanding ring and cylindrical shell under electromagnetic and explosive loadings[J]. Explosion And Shock Waves, 2017, 37(6): 1072-1079. doi: 10.11883/1001-1455(2017)06-1072-08 |
[13] | Zhang Long-hui, Zhang Xiao-qing, Yao Xiao-hu, Zang Shu-guang. Constitutive model of transparent aviation polyurethane at high strain rates[J]. Explosion And Shock Waves, 2015, 35(1): 51-56. doi: 10.11883/1001-1455(2015)01-0051-06 |
[14] | TangTie-gang, LiuCang-li. Ontheconstitutivemodelforoxygen-freehigh-conductivitycopper underhighstrain-ratetension[J]. Explosion And Shock Waves, 2013, 33(6): 581-586. doi: 10.11883/1001-1455(2013)06-0581-06 |
[15] | SUO Tao, DAI Lei, SHI Chun-sen, LI Yu-long, YANG Jian-bo. MechanicalbehaviorsofC/SiCcompositessubjectedtouniaxialcompression athightemperaturesandhighstrainrates[J]. Explosion And Shock Waves, 2012, 32(3): 297-302. doi: 10.11883/1001-1455(2012)03-0297-06 |
[16] | TANG Tie-gang, LI Qing-zhong, CHEN Yong-tao, GU Yan, LIU Cang-li. An improved technique for dynamic tension of metal ring by explosive loading[J]. Explosion And Shock Waves, 2009, 29(5): 546-549. doi: 10.11883/1001-1455(2009)05-0546-04 |
[17] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[18] | ZHU Jue, HU Shi-sheng, WANG Li-li, . Analysis on stress uniformity of viscoelastic materials in split Hopkinson bar tests[J]. Explosion And Shock Waves, 2006, 26(4): 315-322. doi: 10.11883/1001-1455(2006)04-0315-08 |
[19] | WANG Li-li, DONG Xin-long, SUN Zi-jian. Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution[J]. Explosion And Shock Waves, 2006, 26(3): 193-198. doi: 10.11883/1001-1455(2006)03-0193-06 |
[20] | LI Yu-long, SUO Tao, GUO Wei-guo, HU Rui, LI Jin-shan, FU Heng-zhi. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J]. Explosion And Shock Waves, 2005, 25(6): 487-492. doi: 10.11883/1001-1455(2005)06-0487-06 |
1. | 徐沛栋,倪萍,杨宝,蒋震宇,刘逸平,刘泽佳,周立成,汤立群. 用于软材料的中应变率LSHPB系统及应用. 爆炸与冲击. 2025(03): 3-12 . ![]() | |
2. | 仇志龙,赵奎,曹业锐,何进贵,刘勋,杨刚. 红砂岩平板撞击实验与高压状态方程研究. 爆破. 2024(03): 69-74+84 . ![]() | |
3. | 房子建,郭滔,汪洋,李子然. AZ80合金的动态包辛格效应及其各向异性. 材料科学与工程学报. 2024(05): 711-717 . ![]() | |
4. | 郭滔,房子建,汪洋,李子然. 应变速率对TA7钛合金包辛格效应的影响. 塑性工程学报. 2023(11): 73-81 . ![]() | |
5. | 苟建军,王森,王健,范利锋,张文清,田晓东. 基于BP神经网络的金属薄板包辛格效应预测. 塑性工程学报. 2022(08): 152-157 . ![]() | |
6. | 余佳,汪洋,李子然. TA7钛合金动态包辛格效应的实验研究. 实验力学. 2021(05): 601-608 . ![]() |