Volume 41 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
YAN Ping, ZHAO Yali, LI Xin, WEI Ping. Research on the equivalent relationship of torpedo penetrated by underwater supercavitation projectile based on energy consumption model[J]. Explosion And Shock Waves, 2021, 41(9): 093901. doi: 10.11883/bzycj-2020-0240
Citation: YAN Ping, ZHAO Yali, LI Xin, WEI Ping. Research on the equivalent relationship of torpedo penetrated by underwater supercavitation projectile based on energy consumption model[J]. Explosion And Shock Waves, 2021, 41(9): 093901. doi: 10.11883/bzycj-2020-0240

Research on the equivalent relationship of torpedo penetrated by underwater supercavitation projectile based on energy consumption model

doi: 10.11883/bzycj-2020-0240
  • Received Date: 2020-07-13
  • Rev Recd Date: 2021-02-18
  • Available Online: 2021-08-27
  • Publish Date: 2021-09-14
  • Supercavitation projectile is one of the research hotspots of underwater defence technology. The cost of underwater damage test is so high that equivalent test on land is considered as a possible alternative. Therefore, it is necessary to obtain the equivalent relationship between the target and related materials under the condition of supercavitating projectile underwater penetration. Taking MK48-5 torpedo as the object, a typical torpedo structure model composed of shell and 14 key components is constructed. Considering the influence of aqueous medium on penetration, the process of underwater supercavitating projectile penetrated torpedo could be divided into two stages: (1) the projectile penetrated the aqueous medium and the torpedo shell, (2) the projectile penetrated key parts of the torpedo. The energy consumption model of aqueous medium and target plate are established. According to the principle of limit penetration velocity equivalence and energy equivalence, the relationship between target and equivalent target in two stages is obtained respectively. In order to obtain the damage effect of projectiles hitting torpedoes vertically in different directions and under different working conditions, it is necessary to study the four typical sections of torpedoe: warhead, control section, fuel tank and torpedo afterbody. Therefore, the multi-layer equivalent target models of underwater penetration and torpedo penetration under different conditions are established.
  • loading
  • [1]
    金大桥, 王聪, 余锋. 水下超空泡射弹研究综述 [J]. 飞航导弹, 2010(7): 19–23. DOI: 10.16338/j.issn.1009-1319.2010.07.004.

    JIN D Q, WANG C, YU F. A Review of underwater supercavitation projectiles [J]. Winged Missiles Journal, 2010(7): 19–23. DOI: 10.16338/j.issn.1009-1319.2010.07.004.
    [2]
    FARRAND T, MAGNESS L, BURKINS M. Definition and uses of RHA equivalences for medium caliber targets [C]// Proceedings of the 19th International Symposium of Ballistics. Interlaken, 2001: 1159−1165.
    [3]
    HELD M. Shaped charge steel equivalence [C]// Proceedings of the 20th International Symposium on Ballistics. Orlando, 2002: 23−27.
    [4]
    熊冉, 高欣宝, 张俊坤, 等. 杆式穿甲弹侵彻下陶瓷与均质钢板的等效关系数值分析 [J]. 弹箭与制导学报, 2013, 33(5): 102–104. DOI: 10.15892/j.cnki.djzdxb.2013.05.004.

    XIONG R, GAO X B, ZHANG J K, et al. The simulation on equivalence between ceramic and homogeneous steel impacted by rod armor-piercing projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(5): 102–104. DOI: 10.15892/j.cnki.djzdxb.2013.05.004.
    [5]
    周捷, 智小琦, 徐锦波, 等. 小尺寸破片对单兵防护装备的侵彻研究 [J]. 爆炸与冲击, 2019, 39(2): 023304. DOI: 10.11883/bzycj-2018-0023.

    ZHOU J, ZHI X Q, XU J B, et al. Research on penetration of small size fragment to single soldier protection equipment [J]. Explosion and Shock Waves, 2019, 39(2): 023304. DOI: 10.11883/bzycj-2018-0023.
    [6]
    曹兵. 603靶板抗EFP侵彻等效靶实验研究 [J]. 爆破器材, 2007, 36(1): 36–39. DOI: 10.3969/j.issn.1001-8352.2007.01.012.

    CAO B. Experimental study on the equivalent target of 603 armor penetrated by EFP [J]. Explosive Materials, 2007, 36(1): 36–39. DOI: 10.3969/j.issn.1001-8352.2007.01.012.
    [7]
    李运禄. EFP/破片组合式防空反导战斗部对反舰导弹毁伤的数值模拟研究 [D]. 太原: 中北大学, 2016: 58−81.

    LI Y L. Research on damage performance of EFP/fragment combined air defense and antimissile warhead to anti-ship missile [D]. Taiyuan: North University of China, 2016: 58−81.
    [8]
    张培忠, 何永, 高树滋. 相似模拟法在脱壳穿甲弹威力靶设计中的应用 [J]. 南京理工大学学报, 2000, 24(1): 6–8. DOI: 10.14177/j.cnki.32-1397n.2000.01.002.

    ZHANG P Z, HE Y, GAO S Z. Application of similitude method in the design of sabot armor piercing projectile power target [J]. Journal of Nanjing University of Science and Technology, 2000, 24(1): 6–8. DOI: 10.14177/j.cnki.32-1397n.2000.01.002.
    [9]
    赵金库. 小口径尾翼稳定脱壳穿甲弹技术研究 [D]. 南京: 南京理工大学, 2010: 58−72. DOI: 10.7666/d.y1697774.

    ZHAO J K. Research on the technology of small caliber tail stabilized shelled penetrator [D]. Nanjing: Nanjing University of Science and Technology, 2010: 58−72. DOI: 10.7666/d.y1697774.
    [10]
    周岩, 唐平, 常敬臻, 等. 舰舷结构与均质靶板等效关系的基本方法 [J]. 弹道学报, 2008, 20(1): 30–34.

    ZHOU Y, TANG P, CHANG J Z, et al. Basic method for equivalent relation between structure of warship and homogeneous target [J]. Journal of Ballistics, 2008, 20(1): 30–34.
    [11]
    刘亭, 刘轶强. 射弹侵彻下鱼、水雷壳体与均质钢的等效关系 [J]. 水雷战与舰船防护, 2014, 22(4): 8–12, 16.

    LIU T, LIU Y Q. Equivalent relation of torpedo and sea mine shell and homogeneous steel under projectile penetration [J]. Mine Warfare & Ship Self-Defence, 2014, 22(4): 8–12, 16.
    [12]
    尹韶平, 刘瑞生. 鱼雷总体技术 [M]. 北京: 国防工业出版社, 2011.

    YIN S P, LIU R S. Torpedo overall technology [M]. Beijing: National Defense Industry Press, 2011.
    [13]
    石秀华, 王晓娟. 水中兵器概论-鱼雷分册 [M]. 西安: 西北工业大学出版社, 2005: 1−11.

    SHI X H, WANG X J. Introduction to underwater weapons torpedo section [M]. Xi’an: Northwestern Polytechnical University Press, 2005: 1−11.
    [14]
    李向东, 杜忠华. 目标易损性 [M]. 北京: 北京理工大学出版社, 2013.

    LI X D, DU Z H. Target vulnerability [M]. Beijing: Beijing Institute of Technology Press, 2013.
    [15]
    康德. 超空泡射弹对典型鱼雷的毁伤效能评估方法研究 [D]. 武汉: 海军工程大学, 2014: 10−26.

    KANG D. Study on the method of evaluating the damage efficiency of supercavitation projectile to typical torpedoes[D]. Wuhan: Naval Engineering University, 2014: 10−26.
    [16]
    曹兵. 靶板等效方法研究 [J]. 弹箭与制导学报, 2003, 23(3): 122–123.

    CAO B. Study on equivalent target experimental methods [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003, 23(3): 122–123.
    [17]
    杨玉林, 赵国志, 杜忠华, 等. 动能弹侵彻陶瓷与均质钢板的等效关系 [J]. 弹道学报, 2003, 15(4): 32–35. DOI: 10.3969/j.issn.1004-499X.2003.04.007.

    YANG Y L, ZHAO G Z, DU Z H, et al. RHA equivalence of ceramic impacted by kinetic energy projectiles [J]. Journal of Ballistics, 2003, 15(4): 32–35. DOI: 10.3969/j.issn.1004-499X.2003.04.007.
    [18]
    陈贝贝, 张先锋, 邓佳杰, 等. 弹体侵彻YAG透明陶瓷/玻璃的剩余深度 [J]. 爆炸与冲击, 2020, 40(8): 083301. DOI: 10.11883/bzycj-2019-0372.

    CHEN B B, ZHANG X F, DENG J J, et al. Residual penetration depth of a projectile into YAG transparent ceramic/glass [J]. Explosion and Shock Waves, 2020, 40(8): 083301. DOI: 10.11883/bzycj-2019-0372.
    [19]
    赵国志, 杨玉林. 动能弹对装甲目标毁伤评估的等效靶模型 [J]. 南京理工大学学报, 2003, 27(5): 509–514. DOI: 10.14177/j.cnki.32-1397n.2003.05.009.

    ZHAO G Z, YANG Y L. Equivalent surrogates for armor target damage assessment by kinetic energy projectiles [J]. Journal of Nanjing University of Science and Technology, 2003, 27(5): 509–514. DOI: 10.14177/j.cnki.32-1397n.2003.05.009.
    [20]
    CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
    [21]
    FORRESTAL M J, TZOU D Y, ASKARI E, et al. Penetration into ductile metal targets with rigid spherical-nose rods [J]. International Journal of Impact Engineering, 1995, 16(5−6): 699–710. DOI: 10.1016/0734-743X(95)00005-U.
    [22]
    CHEN X W, LI Q M. Perforation of a thick plate by rigid projectiles [J]. International Journal of Impact Engineering, 2003, 28(7): 743–759. DOI: 10.1016/S0734-743X(02)00152-5.
    [23]
    WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047.
    [24]
    孙炜海, 文鹤鸣. 锥头弹丸低速撞击下薄金属靶板的穿透 [J]. 固体力学学报, 2009, 30(4): 361–367. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2009.04.006.

    SUN W H, WEN H M. Perforation of thin metal plates struck by conical-nosed projectiles at relatively low velocities [J]. Chinese Journal of Solida Mechanics, 2009, 30(4): 361–367. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2009.04.006.
    [25]
    HILL R. The mathematical theory of plasticity [M]. Oxford: Oxford University Press, 1950: 125−127.
    [26]
    米双山, 张锡恩, 陶贵明. 钨球侵彻LY-12铝合金靶板的有限元分析 [J]. 爆炸与冲击, 2005, 25(5): 477–480. DOI: 10.11883/1001-1455(2005)05-0477-04.

    MI S S, ZHANG X E, TAO G M. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target [J]. Explosion and Shock Waves, 2005, 25(5): 477–480. DOI: 10.11883/1001-1455(2005)05-0477-04.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(14)

    Article Metrics

    Article views (401) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return