Volume 41 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
ZHAO Chunfeng, HE Kaicheng, LU Xin, PAN Rong, WANG Jingfeng, LI Xiaojie. Analysis on the blast resistance of steel concrete composite slab[J]. Explosion And Shock Waves, 2021, 41(9): 095102. doi: 10.11883/bzycj-2020-0291
Citation: ZHAO Chunfeng, HE Kaicheng, LU Xin, PAN Rong, WANG Jingfeng, LI Xiaojie. Analysis on the blast resistance of steel concrete composite slab[J]. Explosion And Shock Waves, 2021, 41(9): 095102. doi: 10.11883/bzycj-2020-0291

Analysis on the blast resistance of steel concrete composite slab

doi: 10.11883/bzycj-2020-0291
  • Received Date: 2020-08-24
  • Rev Recd Date: 2020-12-30
  • Available Online: 2021-08-20
  • Publish Date: 2021-09-14
  • Steel concrete steel composite slab is a new type of composite structure. It has the characteristics of high shear strength, high ductility and strong energy consumption compared with the traditional reinforced concrete slab. The new type composite slab has been widely used in nuclear reactor containment, offshore platform and oil storage tank. Two scaled reinforced concrete slabs (RCS) and steel-concrete-steel (SCS) composite slabs were designed and manufactured, and the experimental study was carried out under the contact explosion load. The anti-blast performance of different slabs was analyzed by damage analysis and displacement. Based on ANSYS/LS-DYNA nonlinear finite element program, the damage modes and the maximum deflection of the mid-span of the steel-concrete composite slab are numerically investigated, and the numerical damage modes and maximum deflection of the steel-concrete composite slabs are compared with the test results of the components, which verifies the accuracy and applicability of the finite element analysis model. In this study, the influences of parameters, such as explosive quantity, concrete strength and steel plate thickness on the anti-blast performance of steel-concrete composite plate are numerically analyzed by parametric analysis. Then, the prediction formula of mid-span deflection of SCS slab is proposed by using the method of multi parameter regression analysis. The results show that the plastic damage of the structure can be reduced by increasing the strength of concrete, and the maximum deflection of SCS can be effectively reduced by increasing the thickness of steel plate. It is indicated that the SCS maintains good integrity and owns the ability to continue to carry load compared with the RCS. Finally, the fitting formula can well predict the relationship between the mid span deflection of SCS plate and the charge amount and the thickness of steel plate.
  • loading
  • [1]
    王威, 张龙旭, 苏三庆, 等. 波形钢板剪力墙抗震性能试验研究 [J]. 建筑结构学报, 2018, 39(5): 36–44. DOI: 10.14006/j.jzjgxb.2018.05.005.

    WANG W, ZHANG L X, SU S Q, et al. Experimental research on seismic behavior of corrugated steel plate shear wall [J]. Journal of Building Structures, 2018, 39(5): 36–44. DOI: 10.14006/j.jzjgxb.2018.05.005.
    [2]
    聂建国, 樊健生, 黄远, 等. 钢板剪力墙的试验研究 [J]. 建筑结构学报, 2010, 31(9): 1–8. DOI: 10.14006/j.jzjgxb.2010.09.015.

    NIE J G, FAN J S, HUANG Y, et al. Experimental research on steel plate shear wall [J]. Journal of Building Structures, 2010, 31(9): 1–8. DOI: 10.14006/j.jzjgxb.2010.09.015.
    [3]
    ZHAO C F, LU X, WANG Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading [J]. Engineering Structures, 2019, 196: 109337. DOI: 10.1016/j.engstruct.2019.109337.
    [4]
    ZHAO C F, WANG Q, LU X, et al. Blast resistance of small-scale RCS in experimental test and numerical analysis [J]. Engineering Structures, 2019, 199: 109610. DOI: 10.1016/j.engstruct.2019.109610.
    [5]
    SOHEL K M A, LIEW J Y R. Behavior of steel-concrete-steel sandwich slabs subject to impact load [J]. Journal of Constructional Steel Research, 2014, 100: 163–175. DOI: 10.1016/j.jcsr.2014.04.018.
    [6]
    LIEW J Y R, WANG T Y. Novel steel-concrete-steel sandwich composite plates subject to impact and blast load [J]. Advances in Structural Engineering, 2011, 14(4): 673–687. DOI: 10.1260/1369-4332.14.4.673.
    [7]
    ZHAO C F, CHEN J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading [J]. Theoretical and Applied Fracture Mechanics, 2013, 63: 54–62. DOI: 10.1016/j.tafmec.2013.03.006.
    [8]
    ZHAO C F, WANG Q, LU X, et al. Numerical study on dynamic behaviors of NRC slabs in containment dome subjected to close-in blast loading [J]. Thin-Walled Structures, 2019, 135: 269–284. DOI: 10.1016/j.tws.2018.11.013.
    [9]
    赵春风, 王强, 王静峰, 等. 近场爆炸作用下核电厂安全壳穹顶钢筋混凝土板的抗爆性能 [J]. 高压物理学报, 2019, 33(2): 025101. DOI: 10.11858/gywlxb.20180598.

    ZHAO C F, WANG Q, WANG J F, et al. Blast resistance of containment dome reinforced concrete slab in NPP under close-in explosion [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025101. DOI: 10.11858/gywlxb.20180598.
    [10]
    赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.

    ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion and Shock Waves, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.
    [11]
    汪维, 杨建超, 汪剑辉, 等. POZD涂层方形钢筋混凝土板抗接触爆炸试验研究 [J]. 爆炸与冲击, 2020, 40(12): 121402. DOI: 10.11883/bzycj-2020-0180.

    WANG W, YANG J C, WANG J H, et al. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab [J]. Explosion and Shock Waves, 2020, 40(12): 121402. DOI: 10.11883/bzycj-2020-0180.
    [12]
    YAN C, WANG Y H, ZHAI X M, et al. Low velocity impact performance of curved steel-concrete-steel sandwich shells with bolt connectors [J]. Thin-Walled Structures, 2020, 150: 106672. DOI: 10.1016/j.tws.2020.106672.
    [13]
    中华人民共和国住房和城乡建设部. 钢板剪力墙技术规程: JGJ/T 380–2015 [S]. 北京: 中国建筑工业出版社, 2016.
    [14]
    HALLQUIST J O. LS-DYNA keyword user’s manual [Z]. Livermore: Livermore Software Technology Corporation, 2007.
    [15]
    MALVAR L J, CRAWFORD J E, MORILL K B. K&C concrete material model release Ⅲ: automated generation of material model input: Technical Report TR-99-24.3 [R]. Glendale: Karagozian and Case Structural Engineers, 2000.
    [16]
    BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(29)  / Tables(3)

    Article Metrics

    Article views (557) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return