Volume 41 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
SONG Guangming, LI Ming, WU Qiang, GONG Zizheng, ZHANG Pinliang, CAO Yan. Debris cloud characteristics of graded-impedance shields under hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021405. doi: 10.11883/bzycj-2020-0299
Citation: SONG Guangming, LI Ming, WU Qiang, GONG Zizheng, ZHANG Pinliang, CAO Yan. Debris cloud characteristics of graded-impedance shields under hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021405. doi: 10.11883/bzycj-2020-0299

Debris cloud characteristics of graded-impedance shields under hypervelocity impact

doi: 10.11883/bzycj-2020-0299
  • Received Date: 2020-08-26
  • Rev Recd Date: 2020-11-09
  • Available Online: 2021-02-02
  • Publish Date: 2021-02-05
  • Graded-impedance shield is a kind of structure against space debris with excellent protection performance verified by experiments. Graded wave impedance material is used as its core buffer. In order to further optimize the design of graded wave impedance material and promote the engineering application of graded-impedance shield, it is necessary to deeply understand the protection mechanism of the shield against hypervelocity impact. The difference of debris cloud characteristics is an important factor affecting the protection performance of shields against space debris. Further study on the debris cloud characteristics of graded-impedance shield and comparison with aluminum alloy Whipple shield with the same areal density can deepen the understanding of the protection mechanism of graded-impedance shield against hypervelocity impact. In this paper, the hypervelocity impact experiments were carried out at 3.5, 5.0 and 6.5 km/s for the graded-impedance shield and aluminum alloy Whipple shield with the same areal density. The characteristics of the debris cloud formed by the projectile impacting the graded wave impedance material and aluminum alloy material with the same areal density were compared after the experiment, and the characteristics of debris cloud fragmentation was quantitatively analyzed and compared through numerical simulation, including the characteristics of cloud mass, quantity and temperature distribution. As results, it is shown that the fragmentation characteristics of projectile fragments in debris cloud structure are obviously different when the projectile impacts the graded wave impedance material and aluminum alloy material, respectively. When the impact wave impedance gradient material is used, the projectile head is broken more fully, and the projectile lateral expansion degree is increased. In the high-speed section (6.5 km/s), due to the joint action of impedance gradient and material melting effect for the graded wave impedance material, the delamination phenomenon appears in the head of debris cloud. The results show that the change of debris cloud characteristics under hypervelocity impact is one of the key factors that the protective performance of graded wave impedance material is better than that of the aluminum alloy with the same areal density.
  • loading
  • [1]
    CHRISTIANSEN E L. Handbook for designing MMOD protection: NASA JSC-64399 [R]. 2009.
    [2]
    WILLIAMSEN J E, ROBINSON J H, NOLEN A M. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1): 217–228. DOI: 10.1016/0734-743X(95)99848-L.
    [3]
    DESTEFANIS R, SCHAEFER F, LAMBERT M, et al. Selecting enhanced space debris shields for manned spacecraft [J]. International Journal of Impact Engineering, 2006, 33(1): 219–230. DOI: 10.1016/j.ijimpeng.2006.09.065.
    [4]
    COUR-PALAIS B G, CREWS J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10: 135–146. DOI: 10.1016/0734-743X(90)90054-Y.
    [5]
    CHRISTIANSEN E L. Meteoroid/Debris shielding: TP-2003-210788 [R]. 2003.
    [6]
    MAIDEN C J, MCMILLAN A R. An investigation of the protection afforded a spacecraft by a thin shield [J]. AIAA Journal, 1964, 2(11): 1992–1998. DOI: 10.2514/3.2705.
    [7]
    张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000.
    [8]
    PIEKUTOWSKI A J. Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates [J]. International Journal of Impact Engineering, 1993, 14(1): 573–546. DOI: 10.1016/0734-743X(93)90053-A.
    [9]
    PIEKUTOWSKI A J. Formation and description of debris cloud produced by hypervelocity impact: NASA CR-4707 [R]. 1996.
    [10]
    SWIFT H F, PREONAS D D, TURPIA W C, et al. Debris clouds behind plates impacted by hypervelocity pellets [J]. Journal of Spacecraft and Rockets, 1970, 7: 313–318. DOI: 10.2514/3.29926.
    [11]
    唐蜜, 刘仓理, 李平, 等. 超高速撞击产生碎片云相分布数值模拟 [J]. 强激光与粒子束, 2012, 24(9): 2203–2206. DOI: 10.3788/HPLPB20122409.2203.

    TANG M, LIU C L, LI P, et al. Numerical simulation of phase distribution of debris cloud generated by hypervelocity impact [J]. High Power Laser and Particle Beams, 2012, 24(9): 2203–2206. DOI: 10.3788/HPLPB20122409.2203.
    [12]
    SWIFT H F, BAMFORD R, CHEN R. Designing space vehicle shields for meteoroid protection: a new analysis [J]. Advanced in Space Research, 1982, 2(12): 219–234. DOI: 10.1016/0273-1177(82)90311-8.
    [13]
    MERZHIEVSKY L A. Statistical characteristics of a debris cloud behind a shield [J]. International Journal of Impact Engineering, 1997, 20(6): 569–577. DOI: 10.1016/S0734-743X(97)87445-3.
    [14]
    PIEKUTOWSKI A J. A simple dynamic model for the formation of debris clouds [J]. International Journal of Impact Engineering, 1990, 10(1): 453–471. DOI: 10.1016/0734-743X(90)90079-B.
    [15]
    BLESS S. Bumper debris cloud structure estimated by shock calculation [J]. Journal de Physique Ⅳ Colloque, 1991, 1: 903–908. DOI: 10.1051/jp4:19913127.
    [16]
    HUANG J, MA Z X, REN L S, et al. A new engineering model of debris cloud produced by hypervelocity impact [J]. International Journal of Impact Engineering, 2013, 56: 32–39. DOI: 10.1016/j.ijimpeng.2012.07.003.
    [17]
    侯明强, 龚自正, 杨继运, 等. 一种新概念密度梯度型高性能空间碎片防护结构 [C]// 2009年空间环境与材料科学论坛. 北京, 2009.
    [18]
    HOU M Q, GONG Z Z, ZHENG J D, et al. A new concept shield resisting hypervelocity impact [C]// The 29th Inter-Agency Space Debris Coordination Committee Meeting. Berlin, Germany, 2011.
    [19]
    侯明强, 龚自正, 徐坤博, 等. 密度梯度薄板超高速撞击特性的实验研究 [J]. 物理学报, 2014, 63(2): 206–215. DOI: 10.7498/aps.63.024701.

    HOU M Q, GONG Z Z, XU K B, et al. Experimental study on hypervelocity impact characteristics of density-grade thin-plate [J]. Acta Physica Sinica, 2014, 63(2): 206–215. DOI: 10.7498/aps.63.024701.
    [20]
    侯明强, 龚自正, 徐坤博, 等. 密度梯度型防护结构碎片云参数理论分析 [C]// 第十一届全国冲击动力学学术会议. 陕西咸阳, 2013.
    [21]
    郑建东, 龚自正, 席爽, 等. 基于弹丸最大碎片理论的碎片云模型 [J]. 航天器环境工程, 2012, 29(4): 397–400, 2012. DOI: 10.3969/j.issn.1673-1379.2012.04.007.

    ZHENG J D, GONG Z Z, XI S, et al. A new debris cloud model based on the largest fragment theory [J]. Spacecraft Environment Engineering, 2012, 29(4): 397–400, 2012. DOI: 10.3969/j.issn.1673-1379.2012.04.007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (815) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return