Volume 41 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
WANG Dewu, REN Kerong, JIANG Zengrong, ZHAO Hongwei, CHEN Rong, GUO Baoyue. Shock-induced energy release behaviors of reactive materials[J]. Explosion And Shock Waves, 2021, 41(3): 031408. doi: 10.11883/bzycj-2020-0337
Citation: WANG Dewu, REN Kerong, JIANG Zengrong, ZHAO Hongwei, CHEN Rong, GUO Baoyue. Shock-induced energy release behaviors of reactive materials[J]. Explosion And Shock Waves, 2021, 41(3): 031408. doi: 10.11883/bzycj-2020-0337

Shock-induced energy release behaviors of reactive materials

doi: 10.11883/bzycj-2020-0337
  • Received Date: 2020-09-22
  • Rev Recd Date: 2020-11-05
  • Available Online: 2021-03-05
  • Publish Date: 2021-03-10
  • Reactive material is a new type of material with energy-releasing characteristics. It can react chemically and release a large amount of chemical energy under the high pressure and high temperature caused by the impact. Therefore, it has a wide range of potential applications in military fields such as fragments and energy-splitting warheads. In order to realize the design and control of the energy release process of reactive material and promote its weaponized application process, it is necessary to solve a series of complicated mechanical-thermal-chemical coupling problems in the impact-induced energy release behaviors of reactive materials. In the past 40 years, domestic and foreign scholars have carried out a lot of research on the impact-induced energy release behavior of reactive materials. Based on this, this paper systematically combs the research status of the impact-induced chemical reaction mechanism, kinetics and related effects of reactive materials, focusing on the research progress in three aspects: the experimental characterization technology of impact-induced energy release of materials, the theoretical model of impact-induced chemical reaction and the numerical simulation method of shock compression considering the mechanical-thermal-chemical coupling effects. Finally, the summaries are carried out and the future research work, challenges and suggestions are proposed. It is concluded that domestic and foreign scholars have accumulated a certain amount of research on the energy release behaviors of reactive materials, but there is still a lack of richer, finer and intuitive characterization and exploration for the real-time diagnosis of ultra-fast chemical reaction behavior in experiments. However, for the related theoretical and numerical simulation studies, the mechanical thermal chemical theoretical model which can fully describe the impact energy release behavior of active materials has not been established, and there is no effective method to describe the impact energy release behaviors from the macro scale. Therefore, the three aspects of research content, ultra-fast chemical reaction experimental characterization technology, macro-level mechanical-thermal-chemical mechanism and model establishment and its numerical simulation application, and preparation of reactive materials with adjustable properties, will be the focus of attention in promoting the future military application of reactive materials.
  • loading
  • [1]
    WILLIS M J, JASON T D. Effect of aluminum particle size on the impact initiation of pressed rods [J]. Shock Compression of Condensed Matter, 2007, CP955: 971–974.
    [2]
    HAMBLING D. Behind the reactive materials revolution [N/OL]. [2008–05–07] [2020–09–22] https://www.wired.com/2008/05/reactive-revolu-3/.
    [3]
    张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.

    ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
    [4]
    XIONG W, ZHANG X F, ZHENG L, et al. The shock-induced chemical reaction behaviour of Al/Ni composites by cold rolling and powder compaction [J]. Journal of Materials Science, 2019, 54(1): 6651–6667. DOI: 10.1007/s10853-019-03357-3.
    [5]
    CHENG J L, HNG H H, LEE Y W, et al. Kinetic study of thermal- and impact-initiated reactions in Al-Fe2O3 nanothermite [J]. Combustion and Flame, 2010, 157(12): 2241–2249. DOI: 10.1016/j.combustflame.2010.07.012.
    [6]
    PERRY W L, TAPPAN B C, REARDON B L, et al. Energy release characteristics of the nanoscale aluminum-tungsten oxide hydrate metastable intermolecular composite [J]. Journal of Applied Physics, 2007, 101(6): 064313. DOI: 10.1063/1.2435797.
    [7]
    WANG L, LIU J X, LI S K, et al. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites [J]. AIP Advances, 2015, 5(11): 117142. DOI: 10.1063/1.4936557.
    [8]
    FENG B, FANG X, LI Y C, et al. Influence of processing techniques on mechanical properties and impact initiation of an Al-PTFE reactive material [J]. Central European Journal of Energetic Materials, 2016, 13(4): 989–1004. DOI: 10.22211/cejem/61496.
    [9]
    HERBOLD E B, JORDAN J L, THADHANI N N. Effects of processing and powder size on microstructure and reactivity in arrested reactive milled Al+Ni [J]. Acta Materialia, 2011, 59(17): 6717–6728. DOI: 10.1016/j.actamat.2011.07.029.
    [10]
    XIONG W, ZHANG X F, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. DOI: 10.1016/j.jallcom.2015.07.004.
    [11]
    WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302.
    [12]
    刘晓俊, 任会兰, 宁建国. Zr-W多功能含能结构材料的制备及动态压缩特性 [J]. 复合材料学报, 2016, 33(10): 2297–2303. DOI: 10.13801/j.cnki.fhclxb.20160315.001.

    LIU X J, REN H L, NING J G. Preparation and dynamic compression properties of Zr-W multifunctional energetic structural material [J]. Journal of Composite Materials, 2016, 33(10): 2297–2303. DOI: 10.13801/j.cnki.fhclxb.20160315.001.
    [13]
    REN K R, CHEN R. LIN Y L, et al Probing the impact energy release behavior of Al/Ni-based reactive metals with experimental and numerical methods [J]. Metals, 2019, 9(5): 499. DOI: 10.3390/met9050499.
    [14]
    Committee on Advanced Energetic Materials and Manufacturing Technologies, National Research Council. Advanced energetic materials [M]. Washington D C: The National Academies Press, 2004. DOI: 10.17226/10918.
    [15]
    丁亮亮. PELE弹活性内芯配方与弹体结构设计及毁伤机理研究 [D]. 长沙: 国防科技大学, 2019.
    [16]
    WADDELL J T, BOOTES T H, BUDY G D, et al. Reactive shaped charge, reactive liner, and method for target penetration using a reactive shaped charge: US8037829B1 [P]. 2011-08-18.
    [17]
    BATSANOV S S, DORONIN G S, KLOCHKOV S V, et al. Synthesis reactions behind shock fronts [J]. Combustion, Explosion, and Shock Waves, 1986, 22(6): 765–768. DOI: 10.1007/BF00751890.
    [18]
    BAUER F. Ferroelectric properties and shock response of a poled PVF2 polymer and of VF2/C2F3H copolymers [C] // Shock Waves in Condensed Matter. Boston, MA: Springer, 1986: 483–496. DOI: 10.1007/978-1-4613-2207-8_69.
    [19]
    GRAHAM R A, ANDERSON M U, BAUER F, et al. Piezoelectric polarization of the ferroelectric polymer PVDF from 10 MPato 10 GPa: studies of loading-path dependence [C]// SCHMIDT S C, DICK R D, FORBES J W, et al. Shock Compression of Condensed Matter. Amsterdam: Elsevier, 1992: 883–886. DOI: 10.1016/B978-0-444-89732-9.50203-X.
    [20]
    NELLIS W J, MITCHELL A C, MCCANDLESS P C, et al. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures [J]. Physical Review Letters, 1992, 68(19): 2937–2940. DOI: 10.1103/PhysRevLett.68.2937.
    [21]
    BOSLOUGH M B. Shock-induced chemical reactions in nickel-aluminum powder mixtures: radiation pyrometer measurements [J]. Chemical Physics Letters, 1989, 160(5–6): 618–622. DOI: 10.1016/0009-2614(89)80074-0.
    [22]
    BARKER L M, HOLLENBACH R E. Laser interferometer for measuring high velocities of any reflecting surface [J]. Journal of Applied Physics, 1972, 43(11): 4669–4675. DOI: 10.1063/1.1660986.
    [23]
    BARKER L M, HOLLENBACH R E. Interferometer technique for measuring the dynamic mechanical properties of materials [J]. Review of Scientific Instruments, 1965, 36(11): 1617–1620. DOI: 10.1063/1.1719405.
    [24]
    MOORE D S, SCHMIDT S C. Experimental molecular spectroscopy in shock-compressed materials [C] // Proceedings the 5th APS Topical Conference on ‘Shock Waves in Condensed Matter’. Monterey, CA, USA: APS, 1987.
    [25]
    GUPTA Y M. Time-resolved optical spectroscopy under shock loading: electronic and chemical changes in liquid carbon disulfide [J]. High Pressure Research, 1992, 10(5–6): 717–732. DOI: 10.1080/08957959208225324.
    [26]
    DLOTT D D. Ultrafast spectroscopy of shock waves in molecular materials [J]. Annual Review of Physical Chemistry, 1999, 50(1): 251–278. DOI: 10.1146/annurev.physchem.50.1.251.
    [27]
    TROTT W M, KNUDSON M D, CHHABILDAS L C, et al. Measurements of spatially resolved velocity variations in shock compressed heterogeneous materials using a line-imaging velocity interferometer [J]. AIP Conference Proceedings, 2000, 505(1): 993–998. DOI: 10.1063/1.1303635.
    [28]
    EAKINS D E, THADHANI N N. The shock-densification behavior of three distinct Ni+Al powder mixtures [J]. Applied Physics Letters, 2008, 92(11): 111903. DOI: 10.1063/1.2896653.
    [29]
    BENNETT L S, SORRELL F Y, SIMONSEN I K, et al. Ultrafast chemical reactions between nickel and aluminum powders during shock loading [J]. Applied Physics Letters, 1992, 61(5): 520–521. DOI: 10.1063/1.107874.
    [30]
    IYER K R, BENNETT L S, SORRELL F Y, et al. Solid state chemical reactions at the shock front [J]. AIP Conference Proceedings, 1994, 309(1): 1337–1340. DOI: 10.1063/1.46457.
    [31]
    EAKINS D, THADHANI N N. Shock-induced reaction in a flake nickel+spherical aluminum powder mixture [J]. Journal of Applied Physics, 2006, 100(11): 113521. DOI: 10.1063/1.2396797.
    [32]
    GRAHAM R A, ANDERSON M U, HORIE Y, et al. Pressure measurements in chemically reacting powder mixtures with the Bauer piezoelectric polymer gauge [J]. Shock Waves, 1993, 3(2): 79–82. DOI: 10.1007/BF02115887.
    [33]
    XU X, THADHANI N N. Investigation of shock-induced reaction behavior of as-blended and ball-milled Ni+Ti powder mixtures using time-resolved stress measurements [J]. Journal of Applied Physics, 2004, 96(4): 2000–2009. DOI: 10.1063/1.1773380.
    [34]
    MCQUEEN R G, MARSH S P, TAYLOR J W, et al. The equation of state of solids from shock wave studies [M]// KINSLOW R. High Velocity Impact Phenomena. New York: Academic Press, 1970.
    [35]
    KELLY S C, THADHANI N N. Shock compression response of highly reactive Ni+Al multilayered thin foils [J]. Journal of Applied Physics, 2016, 119(9): 095903. DOI: 10.1063/1.4942931.
    [36]
    AMES R G. Vented chamber calorimetry for impact-initiated energetic materials [C] // Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 2005: 1013. DOI: 10.2514/6.2005-279.
    [37]
    AMES R G. Energy release characteristics of impact-initiated energetic materials [C] // MRS Online Proceeding Library. UK: Cambridge University Press, 2005: 0896-H03-08. DOI: 10.1557/PROC-0896-H03-08.
    [38]
    王海福, 刘宗伟, 俞为民, 等. 活性破片能量输出特性实验研究 [J]. 北京理工大学学报, 2009, 29(8): 663–666. DOI: 1001-0645(2009)08-0663-04.

    WANG H F, LIU Z W, YU W M, et al. Experimental investigation of energy release characteristics of reactive fragments [J]. Transactions of Beijing Institute of Technology, 2009, 29(8): 663–666. DOI: 1001-0645(2009)08-0663-04.
    [39]
    ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
    [40]
    LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials and Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107.
    [41]
    XIONG W, ZHANG X F, TAN M T, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites [J]. The Journal of Physical Chemistry C, 2016, 120(43): 24551–24559. DOI: 10.1021/acs.jpcc.6b06530.
    [42]
    ZHANG S, LIU J X, YANG M, et al. Effects of multi-component co-addition on reaction characteristics and impact damage properties of reactive material [J]. Materials and Design, 2018, 153: 1–8. DOI: 10.1016/j.matdes.2018.04.077.
    [43]
    MASON B A, GROVEN L J, SON S F. The role of microstructure refinement on the impact ignition and combustion behavior of mechanically activated Ni/Al reactive composites [J]. Journal of Applied Physics, 2013, 114(11): 113501. DOI: 10.1063/1.4821236.
    [44]
    FENG S S, WANG C L, HUANG G Y. Experimental study on the reaction zone distribution of impact-induced reactive materials [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 896–905. DOI: 10.1002/prep.201600274.
    [45]
    EAKINS D E, THADHANI N N. Investigation of shock-induced reactions in a Ni+Al powder mixture [J]. AIP Conference Proceedings, 2006, 845(1): 1153–1156. DOI: 10.1063/1.2263528.
    [46]
    THADHAN N N. Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures [J]. Journal of Applied Physics, 1994, 76(4): 2129–2138. DOI: 10.1063/1.357624.
    [47]
    NESTERENKO V F, MEYERS M A, CHEN H C, et al. Controlled high-rate localized shear in porous reactive media [J]. Applied Physics Letters, 1994, 65(24): 3069–3071. DOI: 10.1063/1.112509.
    [48]
    VANDERSALL K S, THADHANI N N. Investigation of“shock-induced”and“shock-assisted”chemical reactions in Mo+2Si powder mixtures [J]. Metallurgical and Materials Transactions A, 2003, 34(1): 15–23. DOI: 10.1007/s11661-003-0204-z.
    [49]
    YU L H, MEYERS M A. Shock synthesis and synthesis-assisted shock consolidation of suicides [J]. Journal of Materials Science, 1991, 26(3): 601–611. DOI: 10.1007/BF00588294.
    [50]
    DUNBAR E, THADHANI N N, GRAHAM R A. High-pressure shock activation and mixing of nickel-aluminium powder mixtures [J]. Journal of Materials Science, 1993, 28(11): 2903–2914. DOI: 10.1007/BF00354693.
    [51]
    THADHANI N N, GRAHAM R A, ROYAL T, et al. Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies: time-resolved pressure measurements and materials analysis [J]. Journal of Applied Physics, 1997, 82(3): 1113–1128. DOI: 10.1063/1.365878.
    [52]
    ROYAL T E, NAMJOSHI S, THADHANI N N. Mechanistic processes influencing shock chemistry in powder mixtures of the Ti-Si, Ti-Al, and Ti-B systems [J]. Metallurgical and Materials Transactions A, 1996, 27(7): 1761–1771. DOI: 10.1007/BF02651925.
    [53]
    HORIE Y, GRAHAM R A, SIMONSEN I K. Synthesis of nickel aluminides under high-pressure shock loading [J]. Materials Letters, 1985, 3(9–10): 354–359. DOI: 10.1016/0167-577X(85)90075-8.
    [54]
    AKASHI T, SAWAOKA A, SAITO S, et al. Structural changes of boron nitride caused by multiple shock-compressions [J]. Japanese Journal of Applied Physics, 1976, 15(5): 891. DOI: 10.1143/JJAP.15.891.
    [55]
    BOSLOUGH M B. A thermochemical model for shock-induced reactions (heat detonations) in solids [J]. The Journal of Chemical Physics, 1990, 92(3): 1839–1848. DOI: 10.1063/1.458066.
    [56]
    MEYERS M A. Dynamic behaviour of materials [M]. New York: John Wiley & Sons, 1994. DOI: 10.1002/9780470172278.
    [57]
    BOLME C A, MCGRANE S D, MOORE D S, et al. Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry [J]. Journal of Applied Physics, 2007, 102(3): 033513. DOI: 10.1063/1.2767376.
    [58]
    VANDERSALL K S, THADHANI N N. Time-resolved measurements of the shock-compression response of Mo+2Si elemental powder mixtures [J]. Journal of Applied Physics, 2003, 94(3): 1575–1583. DOI: 10.1063/1.1586968.
    [59]
    HUANG C M, CHEN J, BAI S X, et al. Enhancement of energy release performance of Al-Ni composites by adding CuO [J]. Journal of Alloys and Compounds, 2020, 835: 155271. DOI: 10.1016/j.jallcom.2020.155271.
    [60]
    EAKINS D E, THADHANI N N. Shock compression of reactive powder mixtures [J]. International Materials Reviews, 2009, 54(4): 181–213. DOI: 10.1179/174328009X461050.
    [61]
    GRAHAM R A. Issues in shock-induced solid state chemistry [R]. Albuquerque: Sandia National Lab, 1989.
    [62]
    YANO K, HORIE Y. A numerical study of shock-induced particle velocity dispersion in solid mixtures [J]. Journal of Applied Physics, 1998, 84(3): 1292–1298. DOI: 10.1063/1.368197.
    [63]
    TAMURA S, HORIE Y. Discrete meso-dynamic simulation of thermal explosion in shear bands [J]. Journal of Applied Physics, 1998, 84(7): 3574–3580. DOI: 10.1063/1.368532.
    [64]
    AUSTIN R A. Numerical simulation of the shock compression of microscale reactive particle systems [D]. Atlanta: Georgia Institute of Technology, 2005.
    [65]
    BOLKHOVITINOV L G, BATSANOV S S. Theory of solid-state detonation [J]. Combustion, Explosion, and Shock Waves, 2007, 43(2): 219–221. DOI: 10.1007/s10573-007-0030-5.
    [66]
    ZHANG X F, QIAO L, SHI A S, et al. A cold energy mixture theory for the equation of state in solid and porous metal mixtures [J]. Journal of Applied Physics, 2011, 110(1): 013506. DOI: 10.1063/1.3603018.
    [67]
    张先锋, 赵晓宁, 乔良. 反应金属冲击反应过程的理论分析 [J]. 爆炸与冲击, 2010, 30(2): 145–151. DOI: 10.11883/1001-1455(2010)02-0145-07.

    ZHANG X F, ZHAO X N, QIAO L. Theory analysis on shock-induced chemical reaction of reactive metal [J]. Explosion and Shock Waves, 2010, 30(2): 145–151. DOI: 10.11883/1001-1455(2010)02-0145-07.
    [68]
    HORIE Y, KIPP M E. Modeling of shock-induced chemical reactions in powder mixtures [J]. Journal of Applied Physics, 1988, 63(12): 5718–5727. DOI: 10.1063/1.340309.
    [69]
    DO I P H, BENSON D J. Micromechanical modeling of shock-induced chemical reactions in heterogeneous multi-material powder mixtures [J]. International Journal of Plasticity, 2001, 17(4): 641–668. DOI: 10.1016/S0749-6419(00)00065-6.
    [70]
    BENSON D J. The calculation of the shock velocity-particle velocity relationship for a copper powder by direct numerical simulation [J]. Wave Motion, 1995, 21(1): 85–99. DOI: 10.1016/0165-2125(94)00044-6.
    [71]
    NIEH T G, LUO P, NELLIS W, et al. Dynamic compaction of aluminum nanocrystals [J]. Acta Materialia, 1996, 44(9): 3781–3788. DOI: 10.1016/1359-6454(96)83816-X.
    [72]
    AUSTIN R A, MCDOWELL D L, BENSON D J. Numerical simulation of shock wave propagation in spatially-resolved particle systems [J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14(4): 537–561. DOI: 10.1088/ 0965-0393/14/4/001.
    [73]
    BENSON D J. An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder [J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2(3A): 535–550. DOI: 10.1088/0965-0393/2/3A/008.
    [74]
    BAER M R, TROTT W M. Mesoscale studies of shock loaded tin sphere lattices [J]. AIP Conference Proceedings, 2004, 706(1): 517–520. DOI: 10.1063/1.1780290.
    [75]
    BAER M R. Modeling heterogeneous energetic materials at the mesoscale [J]. Thermochimica Acta, 2002, 384(1–2): 351–367. DOI: 10.1016/S0040-6031(01)00794-8.
    [76]
    BENSON D J, CONLEY P. Eulerian finite-element simulations of experimentally acquired HMX microstructures [J]. Modelling and Simulation in Materials Science and Engineering, 1999, 7(3): 333–354. DOI: 10.1088/0965-0393/7/3/304.
    [77]
    EAKINS D E, THADHANI N N. Discrete particle simulation of shock wave propagation in a Ni+Al powder mixture [J]. Journal of Applied Physics, 2007, 101(4): 043508. DOI: 10.1063/1.2431682.
    [78]
    EAKINS D E, THADHANI N N. Mesoscale simulation of the configuration-dependent shock-compression response of Ni+Al powder mixtures [J]. Acta Materialia, 2008, 56(7): 1496–1510. DOI: 10.1016/j.actamat.2007.12.009.
    [79]
    CHAWLA N, SIDHU R S, GANESH V V. Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites [J]. Acta Materialia, 2006, 54(6): 1541–1548. DOI: 10.1016/j.actamat.2005.11.027.
    [80]
    SIDHU R S, CHAWLA N. Three-dimensional (3D) visualization and microstructure-based modeling of deformation in a Sn-rich solder [J]. Scripta Materialia, 2006, 54(9): 1627–1631. DOI: 10.1016/j.scriptamat.2006.01.013.
    [81]
    AYYAR A, CHAWLA N. Microstructure-based modeling of the influence of particle spatial distribution and fracture on crack growth in particle-reinforced composites [J]. Acta Materialia, 2007, 55(18): 6064–6073. DOI: 10.1016/j.actamat.2007.06.044.
    [82]
    ZHAI J, TOMAR V, ZHOU M. Micromechanical simulation of dynamic fracture using the cohesive finite element method [J]. Journal of Engineering Materials and Technology, 2004, 126(2): 179–191. DOI: 10.1115/1.1647127.
    [83]
    YANG Y, GOULD R D, HORIE Y, et al. Shock-induced chemical reactions in a Ni/Al powder mixture [J]. Applied Physics Letters, 1997, 70(25): 3365–3367. DOI: 10.1063/1.119172.
    [84]
    QIAO L, ZHANG X F, HE Y, et al. Multiscale modelling on the shock-induced chemical reactions of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(17): 173513. DOI: 10.1063/1.4803712.
    [85]
    乔良. 多功能含能结构材料冲击反应与细观特性关联机制研究[D]. 南京: 南京理工大学, 2013.
    [86]
    REDING D J, HANAGUD S. Multiscale chemical reactions in reactive powder metal mixtures during shock compression [J]. Journal of Applied Physics, 2010, 105(2): 024912. DOI: 10.1063/1.2976313.
    [87]
    XIONG Y N, XIAO S F, DENG H Q, et al. Investigation of the shock-induced chemical reaction (SICR) in Ni+Al nanoparticle mixtures [J]. Physical Chemistry Chemical Physics, 2017, 27(19): 17607–17617. DOI: 10.1039/C7CP03176A.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (1041) PDF downloads(222) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return