Citation: | ZENG Fan, XIAO Guizhong, FENG Xiaowei, HUANG Chao, TIAN Rong. A damage assessment method for masonry structures subjected to long duration blast loading[J]. Explosion And Shock Waves, 2021, 41(10): 105101. doi: 10.11883/bzycj-2020-0399 |
[1] |
WESEVICH J W, OSWALD C J. Empirical based concrete masonry pressure-impulse diagrams for varying degrees of damage [M]. New York: American Society of Civil Engineers, 2005: 207−218. DOI: 10.1061/40753(171)207.
|
[2] |
MA G W, SHI H J, SHU D W. p-I diagram method for combined failure modes of rigid-plastic beams [J]. International Journal of Impact Engineering, 2007, 34(6): 1081–1094. DOI: 10.1016/j.ijimpeng.2006.05.001.
|
[3] |
SHI Y C, HAO H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
|
[4] |
陆新征. 工程地震灾变模拟: 从高层建筑到城市区域[M]. 北京: 科学出版社, 2015: 250−257.
|
[5] |
李翼祺, 马素贞. 爆炸力学[M]. 北京: 科学出版社, 1992: 299−301.
|
[6] |
CCPS. Guidelines for evaluating the characteristics of vapor cloud explosions, flash fires, and BLEVEs [M]. New York: Center for Chemical Process Safety of American Institute of Chemical Engineers, 1994.
|
[7] |
DING Y, SONG X R, ZHU H T. Probabilistic progressive collapse analysis of steel frame structures against blast loads [J]. Engineering Structures, 2017, 147: 679–691. DOI: 10.1016/j.engstruct.2017.05.063.
|
[8] |
陶俊林, 李丹, 刘彤, 等. 内爆作用下钢筋混凝土框架结构及承重件的毁伤与评估[M]. 北京: 科学出版社, 2017: 142−143.
|
[9] |
US Department of Defense. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington, USA: Department of Defense, 2008.
|
[10] |
ASCE. Blast protection of buildings [M]. American Society of Civil Engineers, 2011: 7−8. DOI: 10.1061/9780784411889.
|
[11] |
田荣. 爆炸毁伤效应评估 [C] // 第十二届全国爆炸力学学术会议. 浙江桐乡, 2018.
|
[12] |
曾繁, 刘娜. 强冲击波结构毁伤等级评估软件JUST-PANDA及应用 [C] // 第十二届全国爆炸力学学术会议. 浙江桐乡, 2018.
|
[13] |
MO Z Y, ZHANG A Q, CAO X L, et al. JASMIN: a parallel software infrastructure for scientific computing [J]. Frontiers of Computer Science in China, 2010, 4(4): 480–488. DOI: 10.1007/s11704-010-0120-5.
|
[14] |
LIU Q K, MO Z Y, ZHANG A Q, et al. JAUMIN: a programming framework for large-scale numerical simulation on unstructured meshes [J]. CCF Transactions on High Performance Computing, 2019, 1(1): 35–48. DOI: 10.1007/s42514-019-00001-z.
|
[15] |
KUMAR V, KARTIK K V, IQBAL M A. Experimental and numerical investigation of reinforced concrete slabs under blast loading [J]. Engineering Structures, 2020, 206: 110125. DOI: 10.1016/j.engstruct.2019.110125.
|
[16] |
ANTHOINE A. Derivation of the in-plane elastic characteristics of masonry through homogenization theory [J]. International Journal of Solids and Structures, 1995, 32(2): 137–163. DOI: 10.1016/0020-7683(94)00140-R.
|
[17] |
WEI X Y, HAO H. Numerical derivation of homogenized dynamic masonry material properties with strain rate effects [J]. International Journal of Impact Engineering, 2009, 36(3): 522–536. DOI: 10.1016/j.ijimpeng.2008.02.005.
|
[18] |
WU C Q, HAO H. Derivation of 3D masonry properties using numerical homogenization technique [J]. International Journal for Numerical Methods in Engineering, 2006, 66(11): 1717–1737. DOI: 10.1002/nme.1537.
|
[19] |
ZUCCHINI A, LOURENÇO P B. A micro-mechanical model for the homogenisation of masonry [J]. International Journal of Solids and Structures, 2002, 39(12): 3233–3255. DOI: 10.1016/S0020-7683(02)00230-5.
|
[20] |
熊益波, 陈剑杰, 胡永乐, 等. 混凝土Johnson-Holmquist本构模型关键参数研究 [J]. 工程力学, 2012, 29(1): 121–127.
XIONG Y B, CHEN J J, HU Y L, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete [J]. Engineering Mechanics, 2012, 29(1): 121–127.
|
[21] |
肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析 [J]. 计算机辅助设计与图形学学报, 2014, 26(5): 675–686.
XIAO L, CAO X L, WANG H W, et al. Large-scale data visual analysis for numerical simulation of laser fusion [J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(5): 675–686.
|
[22] |
MILLS C A. The design of concrete structures to resist explosions and weapon effects [C] // Proceedings of the 1st International Conference on Concrete for Hazard Protections. Edinburgh, UK, 1987.
|
[23] |
BRASIE W C, SIMPSON D W. Guidelines for estimating damage explosion [J]. Journal of Loss Prevention in the Process Industries, 1968, 2: 91–101.
|
[24] |
PERRY R H, GREEN D W, MALONEY J O. Perry’s chemical engineer’s handbook [M]. 7th ed. New York: McGraw-Hill, 1997.
|
[25] |
CROWL D A. Understanding explosions [M]. New York: Center for Chemical Process Safety of the American Institute of Chemical Engineers, 2003.
|
[26] |
KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. 2nd ed. New York: Springer, 1985.
|
[1] | HU Yong, MA Tian, WANG Junlong, DU Zhibo, HUANG Xiancong, JI Haining, WEI Huilin, LIU Zhanli, KANG Yue. Shock wave detection and evaluation techniques for individual protection[J]. Explosion And Shock Waves, 2025, 45(4): 041101. doi: 10.11883/bzycj-2024-0118 |
[2] | CHEN Ziwei, WANG Zhongqi, ZENG Linghui. A method for predicting peak pressure in an explosion shock tube based on BP neural network[J]. Explosion And Shock Waves, 2024, 44(5): 054101. doi: 10.11883/bzycj-2023-0187 |
[3] | CHENG Shuai, TONG Nianxue, LIU Wenxiang, YIN Wenjun, LI Qinchao, ZHANG Dezhi. A control method for attenuation history of shock wave generated by blast simulation shock tube based on high pressure gas driving technic[J]. Explosion And Shock Waves, 2024, 44(5): 052201. doi: 10.11883/bzycj-2023-0094 |
[4] | ZHANG Shizhong, LI Jinping, KANG Yue, HU Jianqiao, CHEN Hong. Generation of near-field blast wave by means of shock tube[J]. Explosion And Shock Waves, 2024, 44(12): 121434. doi: 10.11883/bzycj-2024-0204 |
[5] | CHEN De, WU Hao, XU Shilin, WEI Jianshu. Shock tube tests and dynamic behavior analyses on one-way masonry-infilled walls[J]. Explosion And Shock Waves, 2023, 43(8): 085103. doi: 10.11883/bzycj-2023-0147 |
[6] | KANG Yue, ZHANG Shizhong, ZHANG Yuanping, LIU Zhanli, HUANG Xiancong, MA Tian. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation[J]. Explosion And Shock Waves, 2021, 41(8): 085901. doi: 10.11883/bzycj-2020-0395 |
[7] | LIU Erwei, XU Shengli. Influence of ignition criterion and dilution gas on ignition delay of ethylene[J]. Explosion And Shock Waves, 2020, 40(6): 062101. doi: 10.11883/bzycj-2019-0402 |
[8] | LI Bo, HUANG Nan, YANG Jun, QIN Haifeng, YIN Xiao, ZHANG Zhaojing. Effects of medium and static pressure on dynamic characteristics of piezoresistive absolute pressure sensor calibrated by shock tube[J]. Explosion And Shock Waves, 2020, 40(5): 054101. doi: 10.11883/bzycj-2019-0309 |
[9] | CHEN Longming, LI Zhibin, CHEN Rong. Characteristics of dynamic explosive shock wave of moving charge[J]. Explosion And Shock Waves, 2020, 40(1): 013201. doi: 10.11883/bzycj-2019-0029 |
[10] | CHENG Xiangli, ZHAO Hui, JIAO Min, YE Haifu, LI Linchuan. Dynamic response characteristics of the protection system for a projectile-borne recorder under high impact loading[J]. Explosion And Shock Waves, 2019, 39(12): 125102. doi: 10.11883/bzycj-2018-0418 |
[11] | HU Yang, YIN Shangxian, Bjørn J. ARNTZEN, ZHU Jianfang, LI Xuebing, Ragnhild Dybdal OIE, QIN Hansheng. Experimental study of multi-objective coupling synchronous control in gas/air premixed gas deflagration flow test system[J]. Explosion And Shock Waves, 2019, 39(9): 094201. doi: 10.11883/bzycj-2018-0312 |
[12] | HE Qiguang, ZHANG Wei, CHEN Xiaowei, XU Jianpeng. Analysis on the deformation process of PET shock tube diaphragm[J]. Explosion And Shock Waves, 2019, 39(3): 033201. doi: 10.11883/bzycj-2017-0409 |
[13] | Huang Xilong, Liao Shenfei, Zou Liyong, Liu Jinhong, Cao Renyi. Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF[J]. Explosion And Shock Waves, 2017, 37(5): 829-836. doi: 10.11883/1001-1455(2017)05-0829-08 |
[14] | Chen Yongtao, Hong Renkai, Wang Xiaoyan, Chen Haoyu, Zhang Chongyu, Hu Haibo. Experimental study on dynamic behaviors of metal sample driven by two head-on colliding detonation waves[J]. Explosion And Shock Waves, 2016, 36(2): 177-182. doi: 10.11883/1001-1455(2016)02-0177-06 |
[15] | Yu Jian-liang, Gao Yuan, Yan Xing-qing, Gao Wei. Correlation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures[J]. Explosion And Shock Waves, 2015, 35(4): 603-608. doi: 10.11883/1001-1455(2015)04-0603-06 |
[16] | YU Jian-liang, YAN Xing-qing, LI Di. Pressurecharacteristicsindustexplosionreliefprocess byusingareliefpipe[J]. Explosion And Shock Waves, 2012, 32(6): 669-672. doi: 10.11883/1001-1455(2012)06-0669-04 |
[17] | LIU Jin-hong, ZOU Li-yong, BAI Jing-song, TAN Duo-wang, HUANG Wen-bin, GUO Wen-can. Richtmyer-Meshkovinstabilityofshock-acceleratedair/SF6interfaces[J]. Explosion And Shock Waves, 2011, 31(2): 135-140. doi: 10.11883/1001-1455(2011)02-0135-06 |
[18] | 西北核技术研究所, 陕西, 西安. Application of sound-vibration coupling analysis in shock wave measurement[J]. Explosion And Shock Waves, 2008, 28(5): 427-432. doi: 10.11883/1001-1455(2008)05-0427-06 |
[19] | WANG Chang-jian, GUO Chang-ming, XU Sheng-li. Study on acceleration of shock generated by normal reflection of gaseous detonation wave[J]. Explosion And Shock Waves, 2007, 27(2): 143-150. doi: 10.11883/1001-1455(2007)02-0143-08 |
[20] | WANG Bao-guo, ZHANG Jing-lin, WANG Zuo-shan, LIU Yu-cun, WANG Jian-hua. Influencing factors of the yield of diamond powder synthesised by detonation and explosion shock[J]. Explosion And Shock Waves, 2006, 26(5): 429-433. doi: 10.11883/1001-1455(2006)05-0429-05 |
1. | 徐泽辉,秦建,王玉,王文廉. 具有高精度时空定位的动爆冲击波测试系统. 中北大学学报(自然科学版). 2025(02): 148-156 . ![]() | |
2. | 何翔,杨建超,王晓峰,王幸,余尚江. 常规战斗部动爆威力研究综述. 防护工程. 2022(01): 1-9 . ![]() | |
3. | 尤文斌,丁永红,张超颖,白志强. 高精度冲击波测试压电适配器的研究. 火炮发射与控制学报. 2021(01): 15-18 . ![]() | |
4. | 姚悦,丁永红,裴东兴,张晓光. 空气中爆炸冲击波曲线重建方法. 计量学报. 2019(04): 636-641 . ![]() | |
5. | 刘浩,尤文斌,裴东兴,牛跃听. 水下冲击波超压高速存储测试系统的研究. 弹箭与制导学报. 2017(01): 60-64 . ![]() | |
6. | 索艳春,李永红. 基于ICP压电传感器的冲击波超压存储测试系统设计. 中国测试. 2017(05): 82-85 . ![]() | |
7. | 侯建强,韩壮志,彭刚. 基于自适应窗长的动爆破片短时傅里叶分析. 弹道学报. 2016(01): 60-63 . ![]() | |
8. | 刘雪飞,马铁华,王俊峰,尤文斌,崔敏. 基于Nios Ⅱ的动爆冲击波记录仪设计. 自动化与仪表. 2016(02): 22-24+28 . ![]() | |
9. | 杜红棉,何志文,马铁华. 冲击波超压测试系统二次仪表频域特性. 爆炸与冲击. 2015(02): 261-266 . ![]() | |
10. | 陈昌鑫,靳鸿,马铁华. 冲击加速度存储测试的变频采样策略分析. 爆炸与冲击. 2015(04): 501-506 . ![]() | |
11. | 杨帆,梁永烨,杜红棉,尤文斌,崔敏,王玉全,刘帆,焦耀晗. 毁伤威力场冲击波无线分布式测试方法研究. 传感技术学报. 2015(01): 71-76 . ![]() | |
12. | 闫宏彪,丁永红,王俊峰. 智能化冲击波超压测试系统. 传感技术学报. 2015(10): 1570-1574 . ![]() | |
13. | 王欢,唐波,李祖博. 基于CPLD的微型脉冲供电式光电倒置开关测试系统(英文). Journal of Measurement Science and Instrumentation. 2015(01): 36-40 . ![]() | |
14. | 尤文斌,马铁华,丁永红,崔敏,张晋业. 冲击波测试系统的动态建模及应用. 高压物理学报. 2014(04): 429-434 . ![]() |