Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
ZHANG Shanbao, KONG Xiangzhen, FANG Qin, HONG Jian. Numerical simulation on ground shock waves induced by hypervelocity penetration of a projectile into a limestone target[J]. Explosion And Shock Waves, 2022, 42(1): 013302. doi: 10.11883/bzycj-2021-0007
Citation: ZHANG Shanbao, KONG Xiangzhen, FANG Qin, HONG Jian. Numerical simulation on ground shock waves induced by hypervelocity penetration of a projectile into a limestone target[J]. Explosion And Shock Waves, 2022, 42(1): 013302. doi: 10.11883/bzycj-2021-0007

Numerical simulation on ground shock waves induced by hypervelocity penetration of a projectile into a limestone target

doi: 10.11883/bzycj-2021-0007
  • Received Date: 2021-01-06
  • Accepted Date: 2021-11-22
  • Rev Recd Date: 2021-03-08
  • Available Online: 2021-12-06
  • Publish Date: 2022-01-20
  • With the advancement of hypervelocity weapons such as the “Rods-from-God”, the damage and failure in targets induced by the hypervelocity penetrators have been a topic of current research, which is still not fully understood. To address this issue, numerical investigation was carried out on ground shock induced by hypervelocity penetration of projectiles into limestone targets. As the material model and corresponding parameters are crucial for the accurate numerical predictions, the parameters for the p-α equation of state and the Kong-Fang material model recently proposed to describe the limestone were firstly calibrated based on a large amount of dynamic tests. The smooth particle hydrodynamics (SPH) method was employed for simulating the target and the axisymmetric numerical model was used to improve the computational efficiency. The calibrated parameters and numerical algorithm were validated by numerically simulating a series of penetration tests on limestone targets with a broad range of striking velocities. Then, based on the validated numerical model, the penetration of long-rod tungsten projectile into a limestone target was simulated and the mechanism of the corresponding ground shock was discussed. It was found that a high pressure in the target was induced by the hypervelocity impact of the projectile, which then propagated into the target as a stress wave, leading to the damage and failure in the target. The induced ground shock wave increased with the increase of the initial projectile velocity, especially when the initial projectile velocity is over 3.0 km/s. Finally, parametric study was conducted to investigate the effects of the parameters related to the projectiles and targets on the ground shock wave. The parameters related to the projectiles, for example, the length-to-diameter ratio and density, which can influence on the damage area of the targets by influencing the depth of penetration, has limited influence on the ground shock wave from the view of the relative depth (the ratio of the depth to the penetration depth). While the target parameters, especially the porosity which can affect the wave propagation, have a great effect on the ground shock wave.
  • loading
  • [1]
    KONG X Z, WU H, FANG Q, et al. Projectile penetration into mortar targets with a broad range of striking velocities: test and analyses [J]. International Journal of Impact Engineering, 2017, 106: 18–29. DOI: 10.1016/j.ijimpeng.2017.02.022.
    [2]
    钱秉文, 周刚, 李进, 等. 钨合金柱形弹超高速撞击水泥砂浆靶的侵彻深度研究 [J]. 爆炸与冲击, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141.

    QIAN B W, ZHOU G, LI J, et al. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target [J]. Explosion and Shock Waves, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141.
    [3]
    王杰, 武海军, 杨荷, 等. 高速/超高速侵彻半无限靶研究进展 [J]. 兵工学报, 2017, 38(S1): 73–88.

    WANG J, WU H J, YANG H, et al. Research progress in penetration of projectiles into semi-infinite targets at high-velocity/hypervelocity [J]. Acta Armamentarii, 2017, 38(S1): 73–88.
    [4]
    李争, 刘元雪, 胡明, 等. “上帝之杖”天基动能武器毁伤效应评估 [J]. 振动与冲击, 2016, 35(18): 159–164. DOI: 10.13465/j.cnki.jvs.2016.14.026.

    LI Z, LIU Y X, HU M, et al. Damage effect evaluation of God stick space-based kinetic energy weapons [J]. Journal of Vibration and Shock, 2016, 35(18): 159–164. DOI: 10.13465/j.cnki.jvs.2016.14.026.
    [5]
    POELCHAU M H, KENKMANN T, THOMA K, et al. The MEMIN research unit: scaling impact cratering experiments in porous sandstones [J]. Meteoritics and Planetary Science, 2013, 48(1): 8–22. DOI: 10.1111/maps.12016.
    [6]
    李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.

    LI G, SONG C M, QIU Y Y, et al. Theoretical and experimental studies on the phenomenon of reduction in penetration depth of hyper-velocity projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
    [7]
    钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.

    QIAN B W, ZHOU G, LI J, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.
    [8]
    孔祥振, 方秦, 吴昊, 等. 长杆弹超高速侵彻半无限靶理论模型的对比分析与讨论 [J]. 振动与冲击, 2017, 36(20): 37–43. DOI: 10.13465/j.cnki.jvs.2017.20.007.

    KONG X Z, FANG Q, WU H, et al. Comparisons of long rod high velocity penetration models for semi-infinite targets [J]. Journal of Vibration and Shock, 2017, 36(20): 37–43. DOI: 10.13465/j.cnki.jvs.2017.20.007.
    [9]
    KONG X Z, WU H, FANG Q, et al. Rigid and eroding projectile penetration into concrete targets based on an extended dynamic cavity expansion model [J]. International Journal of Impact Engineering, 2017, 100: 13–22. DOI: 10.1016/ j.ijimpeng.2016.10.005.
    [10]
    ANTOUN T H, GLENN L A, WALTON O R, et al. Simulation of hypervelocity penetration in limestone [J]. International Journal of Impact Engineering, 2006, 33: 45–52. DOI: 10.1016/j.ijimpeng.2006.09.009.
    [11]
    邓国强, 杨秀敏. 超高速武器对地打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.

    DENG G Q, YANG X M. Numerical simulation of damage effect of hyper velocity weapon on ground target [J]. Science and Technology Review, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.
    [12]
    邓国强, 杨秀敏. 超高速武器流体侵彻与装药浅埋爆炸效应的等效方法 [J]. 防护工程, 2015, 37(6): 27–32.

    DENG G Q, YANG X M. Effect equivalent method between fluid penetration of hypervelocity weapon and shallow detonation of explosive [J]. Protective Engineering, 2015, 37(6): 27–32.
    [13]
    王明洋, 岳松林, 李海波, 等. 超高速弹撞击岩石的地冲击效应等效计算 [J]. 岩石力学与工程学报, 2018, 37(12): 2655–2663. DOI: 10.13722/j.cnki.jrme.2018.0473.

    WANG M Y, YUE S L, LI H B, et al. An equivalent calculation method of ground shock effects of hypervelocity projectile striking on rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2655–2663. DOI: 10.13722/j.cnki.jrme.2018.0473.
    [14]
    方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法 [J]. 工程力学, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.

    FANG Q, KONG X Z, WU H, et al. Determination of Holmquist-Johnson-Cook consitiutive model parameters of rock [J]. Engineering Mechanics, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.
    [15]
    FOSSUM A F, SENSENY P E, PFEIFLE T W, et al. Experimental determination of probability distributions for parameters of a Salem limestone cap plasticity model [J]. Mechanics of Materials, 1995, 21(2): 119–137. DOI: 10.1016/0167-6636(95)00002-X.
    [16]
    KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [17]
    ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [18]
    XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005.
    [19]
    FOSSUM A F, BRANNON R M. On a viscoplastic model for rocks with mechanism-dependent characteristic times [J]. Acta Geotechnica, 2006, 1(2): 89–106. DOI: 10.1007/s11440-006-0010-z.
    [20]
    FOSSUM A F. Rock penetration: finite element sensitivity and probabilistic modeling analyses [R]. Albuquerque, New Mexico: Sandia National Laboratories, 2004: 13–31.
    [21]
    WALTON G, HEDAYAT A, KIM E, et al. Post-yield strength and dilatancy evolution across the brittle-ductile transition in Indiana limestone [J]. Rock Mechanics and Rock Engineering, 2017, 50(7): 1691–1710. DOI: 10.1007/s00603-017-1195-1.
    [22]
    FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics, 2001, 41(1): 40–46. DOI: 10.1007/BF02323102.
    [23]
    CHAKRABORTY T, MISHRA S, LOUKUS J, et al. Characterization of three Himalayan rocks using a split Hopkinson pressure bar [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 85: 112–118. DOI: 10.1016/ j.ijrmms.2016.03.005.
    [24]
    KHAN A S, IRANI F K. An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite [J]. Mechanics of Materials, 1987, 6(4): 285–292. DOI: 10.1016/0167-6636(87)90027-5.
    [25]
    KUBOTA S, OGATA Y, WADA Y, et al. Estimation of dynamic tensile strength of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 397–406. DOI: 10.1016/j.ijrmms.2007.07.003.
    [26]
    WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup [J]. Mechanics of Materials, 2009, 41(3): 252–260. DOI: 10.1016/j.mechmat.2008.10.004.
    [27]
    CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763–777. DOI: 10.1016/S1365-1609(03)00072-8.
    [28]
    HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. DOI: 10.1063/1.1658021.
    [29]
    HEARD H C, ABEY A E, BONNER B P. High pressure mechanical properties of Indiana limestone: UCID-16501 [R]. USA: California University, Lawrence Livermore National Laboratory, 1974.
    [30]
    LARSON D B, ANDERSON G D. Plane shock wave studies of porous geologic media [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B9): 4592–4600. DOI: 10.1029/JB084iB09p04592.
    [31]
    MURRI W J, SMITH C W, MAHRER K D. Equation of state of rocks: PYU-1883 [R]. USA: Stanford Research Institute, 1974.
    [32]
    FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [33]
    MCFARLAND C, PAPADOS P, GILTRUD M. Hypervelocity impact penetration mechanics [J]. International Journal of Impact Engineering, 2008, 35(12): 1654–1660. DOI: 10.1016/j.ijimpeng.2008.07.080.
    [34]
    STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high strain rate [J]. Journal of Applied Mechanics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799.
    [35]
    杜成成. 应力波在混凝土中传播特性及结构特征参数监测研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018: 49–77.

    DU C C. Research on transmission properties of stress waves in concrete and monitoring of structural characteristic parameters [D]. Harbin: Harbin Institute of Technology, 2018: 49–77.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views (364) PDF downloads(217) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return