Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
YE Xiangping, NAN Xiaolong, DUAN Zhiwei, YU Yuying, CAI Lingcang, LIU Cangli. Effects of roughness on dynamic compression propertiesof metallic materials by SHPB technique[J]. Explosion And Shock Waves, 2022, 42(1): 013104. doi: 10.11883/bzycj-2021-0008
Citation: YE Xiangping, NAN Xiaolong, DUAN Zhiwei, YU Yuying, CAI Lingcang, LIU Cangli. Effects of roughness on dynamic compression propertiesof metallic materials by SHPB technique[J]. Explosion And Shock Waves, 2022, 42(1): 013104. doi: 10.11883/bzycj-2021-0008

Effects of roughness on dynamic compression propertiesof metallic materials by SHPB technique

doi: 10.11883/bzycj-2021-0008
  • Received Date: 2021-01-06
  • Accepted Date: 2021-11-19
  • Rev Recd Date: 2021-05-17
  • Available Online: 2021-11-25
  • Publish Date: 2022-01-20
  • Effective reduction of end surface friction is necessary to ensure the validity and accuracy of the split Hopkinson pressure bar (SHPB) experimental results. In order to study the effects of sample roughness and lubrication efficiency on the end surface friction and the final experimental results, copper was selected as a research material due to its steady mechanical properties and strain rate insensitivity of constitutive relation. In order to minimize the effects of end friction, all pressure bars with the diameter of 10 mm had a surface roughnesses of 0.8 μm. Copper samples of three typical surface roughnesses were prepared by mechanical processing and corrosion, then high precision repeat dynamic compression experiments by the SHPB were carried out under the conditions of full lubrication with MoS2 and complete non-lubrication, respectively. The results show that MoS2 can only play a good lubrication when the end roughness of the copper samples does not exceed 0.8 μm, then the lubricating efficiency of MoS2 decreases rapidly with increasing the end roughness of the copper samples, which results in a significant increase in the friction force and the dispersion of experimental data. MoS2 could not effectively reduce the friction force when the roughness of samples is 1.6 μm, and the lubricating efficiency was almost zero when the roughness is 3.2 μm, although the MoS2 has been believed to be an effective lubrication used in dynamic compression experiments by the SHPB for a long time. The end roughness of the pressure bars and samples should reach 0.8 μm when MoS2 is used as lubrication for the SHPB experiments, however, the end roughness of the samples treated by a corrosive solution is difficult to reach 0.8 μm. Therefore, it is necessary to lubricate the end of the samples better than MoS2, or to modify the experimental data by deducting the friction force to ensure the validity and accuracy of the SHPB experimental results.
  • loading
  • [1]
    HOPKINSON B. A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1914, 213: 437–456. DOI: 10.1098/rsta.1914.0010.
    [2]
    KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society: Section B, 1949(62): 676–700. DOI: 10.1088/0370-1301/62/11/302.
    [3]
    PRABHU S, TONG Q. Simulation of split Hopkinson pressure bar tests on sands with low water content [J]. Journal of Engineering Mechanics, 2020, 146(8): 04020082. DOI: 10.1061/(ASCE)EM.1943-7889.0001819.
    [4]
    LIANG W, CHEN R, ZHANG Y W. A dynamic calibration method of free-field pressure sensor based on Hopkinson bar [J]. AIP Advances, 2020, 10(7): 075223. DOI: 10.1063/5.0008383.
    [5]
    徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究 [J]. 爆炸与冲击, 2019, 39(7): 071101. DOI: 10.11883/bzycj-2019-0034.

    XU S L, SHAN J F, WANG P F, et al. Penetration performance of concrete under triaxial stress [J]. Explosion and Shock Waves, 2019, 39(7): 071101. DOI: 10.11883/bzycj-2019-0034.
    [6]
    舒旗, 董新龙, 俞鑫炉. 基于Hopkinson压杆的M型试样动态拉伸实验方法研究 [J]. 爆炸与冲击, 2020, 40(8): 084101. DOI: 10.11883/bzycj-2019-0433.

    SHU Q, DONG X L, YU X L. A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar [J]. Explosion and Shock Waves, 2020, 40(8): 084101. DOI: 10.11883/bzycj-2019-0433.
    [7]
    ZHANG C, SUO T, TAN W L, et al. An experimental method for determination of dynamic mechanical behavior of materials at high temperatures [J]. International Journal of Impact Engineering, 2017, 102(1): 27–35. DOI: 10.1016/j.ijimpeng.2016.12.002.
    [8]
    武智慧, 牛公杰, 郝玉风, 等. HTPB复合底排药压缩屈服应力模型研究 [J]. 力学学报, 2019, 51(6): 1810–1819. DOI: 10.6052/0459-1879-19-200.

    WU Z H, NIU G J, HAO Y F, et al. Research on modeling of compressive yield behavior for HTPB composite base bleed grain [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1810–1819. DOI: 10.6052/0459-1879-19-200.
    [9]
    YU X, CHEN L, FANG Q. et al. Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave [J]. International Journal of Impact Engineering, 2019, 125(1): 63–82. DOI: 10.1016/j.ijimpeng.2018.11.004.
    [10]
    CHEN W N, SONG B. Split Hopkinson (Kolsky) bar [M]. New York: Springer, 2011.
    [11]
    卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013.
    [12]
    杨洪升, 李玉龙, 周风华. 梯形应力脉冲在弹性杆中的传播过程和几何弥散 [J]. 力学学报, 2019, 51(6): 1820–1829. DOI: 10.6052/0459-1879-19-183.

    YANG H S, LI Y L, ZHOU F H. The propagation process and the geometric dispersion of a trapezoidal stress pulse in an elastic rod [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1820–1829. DOI: 10.6052/0459-1879-19-183.
    [13]
    王晓燕, 卢芳云, 林玉亮. SHPB实验中端面摩擦效应研究 [J]. 爆炸与冲击, 2006, 26(2): 134–139. DOI: 10.11883/1001-1455(2006)02-0134-06.

    WANG X Y, LU F Y LIN Y L. Study on interfacial friction effect in the SHPB tests [J]. Explosion and Shock Waves, 2006, 26(2): 134–139. DOI: 10.11883/1001-1455(2006)02-0134-06.
    [14]
    肖大武, 邱志聪, 巫祥超, 等. 金属铍的压缩变形行为 [J]. 爆炸与冲击, 2016, 36(2): 285–288. DOI: 10.11883/1001-1455(2016)02-0285-04.

    XIAO D W, QIU Z C, WU X C, et al. Compressive deformation behaviors of beryllium [J]. Explosion and Shock Waves, 2016, 36(2): 285–288. DOI: 10.11883/1001-1455(2016)02-0285-04.
    [15]
    张鹏程, 田黎明. 车削加工对铍组织与性能的损伤 [J]. 稀有金属, 2001, 25(2): 90–93.

    ZHANG P C, TIAN L M. Effects of lathe on microstructure and mechanical properties of beryllium [J]. Chinese Journal of Rare Metals, 2001, 25(2): 90–93.
    [16]
    张鹏程, 邹觉生, 董平, 等. 消除铍机加工表层损伤方法的研究 [J]. 有色金属, 2001, 53(1): 60–63.

    ZHANG P C, ZOU J S, DONG P, et al. Study on machine damage of beryllium and its relieving methods [J]. Nonferrous Metals, 2001, 53(1): 60–63.
    [17]
    KLIMENKOV M, VLADIMIROV P, JÄNTSCH U, et al. New insights into microstructure of irradiated beryllium based on experiments and computer simulations [J]. Scientific Reports, 2020, 10(1): 8042. DOI: 10.1038/s41598-020-64654-5.
    [18]
    ZIMBER N, VLADIMIROV P, KLIMENKOV M, et al. Investigation of a high-dose irradiated beryllium microstructure [J]. Journal of Nuclear Materials, 2020, 540(1): 152374. DOI: 10.1016/j.jnucmat.2020.152374.
    [19]
    BLUMENTHAL W R, ABELN S P, MATAYA M C, et al. Dynamic behavior of beryllium as a function of texture: LA-UR-98-4577 [R]. Washington D C: Los Alamos National Laboratory, 1999.
    [20]
    LI W, LI D Y. Influence of surface morphology on corrosion and electronic behavior [J]. Acta Materialia, 2006, 54(2): 445–452. DOI: 10.1016/j.actamat.2005.09.017.
    [21]
    LI Y, FRANK CHENG F. Effect of surface finishing on early-stage corrosion of a carbon steel studied by electrochemical and atomic force microscope characterizations [J]. Applied Surface Science, 2016, 336(3): 95–103. DOI: 10.1016/j.apsusc.2016.01.081.
    [22]
    李智, 吕胜利, 刘转娥, 等. 2A12铝合金在EXCO溶液中腐蚀损伤形貌演化分析 [J]. 装备环境工程, 2019, 16(8): 80–85. DOI: 10.7643/issn.1672-9242.2019.08.0015.

    LI Z, LYU S L, LIU Z E, et al. Corrosion damage morphology evolution of 2A12 aluminum alloy in EXCO solution [J]. Equipment Environmental Engineering, 2019, 16(8): 80–85. DOI: 10.7643/issn.1672-9242.2019.08.0015.
    [23]
    KIM J A, KIM J W, KANG C S, et al. Metrological atomic force microscope using a large range scanning dual stage [J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(5): 11–17. DOI: 10.1007/s12541-009-0087-z.
    [24]
    DAVID E, ELIEZER G, EHUD G, et al. Atomic force microscope-based meniscus-confined three-dimensional electrodeposition [J]. Advanced Materials Technologies, 2020, 5(2): 1900827. DOI: 10.1002/admt.201900827.
    [25]
    BEWSHER S R, LEIGHTON M, MOHAMMADPOUR M, et al. Boundary friction characterisation of a used cylinder liner subject to fired engine conditions and surface deposition [J]. Tribology International, 2019, 131(1): 424–437. DOI: 10.1016/j.triboint.2018.11.005.
    [26]
    ZHANG Z M, WANG J Q, HAN E H, et al. Characterization of different surface states and its effects on the oxidation behaviours of alloy 690TT [J]. Journal of Materials Science and Technology, 2012, 28(4): 353–361. DOI: 10.1016/S1005-0302(12)60067-X.
    [27]
    DONG L J, MA C, PENG Q J, et al. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment [J]. Journal of Materials Science and Technology, 2020, 44: 1–14. DOI: 10.1016/j.jmst.2019.08.035.
    [28]
    WANG S S, FRANKEL G S, JIANG J T, et al. Mechanism of localized breakdown of 7000 series aluminum alloys [J]. Journal of the Electrochemical Society, 2013, 160(10): C493–C502. DOI: 10.1149/2.080310jes.
    [29]
    LU F Y, LIN Y L, WANG X Y, et al. A theoretical analysis about the influence of interfacial friction in SHPB tests [J]. International Journal of Impact Engineering, 2015, 79(1): 95–101. DOI: 10.1016/j.ijimpeng.2014.10.008.
    [30]
    CAO S J, HOU X M, RONG Q. Dynamic compressive properties of reactive powder concrete at high temperature: a review [J]. Cement and Concrete Composites, 2020, 110(1): 103568. DOI: 10.1016/j.cemconcomp.2020.103568.
    [31]
    HUANG B F, XIAO Y. Compressive impact tests of lightweight concrete with 155-mm-diameter spilt Hopkinson pressure bar [J]. Cement and Concrete Composites, 2020, 114(2): 103816. DOI: 10.1016/j.cemconcomp.2020.103816.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (335) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return