Volume 41 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
WU Ping, XU Shilang, LI Qinghua, ZHOU Fei, CHEN Baikun, JIANG Xiao, AL MANSOUR Ahmed. Anti-explosion tests and numerical simulations of ultra-high toughness cementitious composites subjected to blast by embedded explosives[J]. Explosion And Shock Waves, 2021, 41(7): 075101. doi: 10.11883/bzycj-2021-0059
Citation: WU Ping, XU Shilang, LI Qinghua, ZHOU Fei, CHEN Baikun, JIANG Xiao, AL MANSOUR Ahmed. Anti-explosion tests and numerical simulations of ultra-high toughness cementitious composites subjected to blast by embedded explosives[J]. Explosion And Shock Waves, 2021, 41(7): 075101. doi: 10.11883/bzycj-2021-0059

Anti-explosion tests and numerical simulations of ultra-high toughness cementitious composites subjected to blast by embedded explosives

doi: 10.11883/bzycj-2021-0059
  • Received Date: 2021-02-07
  • Rev Recd Date: 2021-04-10
  • Available Online: 2021-06-21
  • Publish Date: 2021-07-05
  • To study the blast resistance and damage rule of ultra-high toughness cementitious composites (UHTCC) subjected to blast by embedded explosives, blast resistance tests of embedded explosives were carried out on UHTCC and high-strength concrete (HSC) with different embedded depths of explosives. The damage patterns of the targets of the two materials were obtained. Using the test results of contact explosion, the blast resistance parameters of the above two materials were calculated. The test results show that UHTCC has better blast resistance than high-strength concrete under the same test conditions. To further explore the influence of compressive strength, tensile strength and tensile toughness on the blast resistance of UHTCC targets to embedded explosives, the improved K&C model was used to numerically simulate the UHTCC target subjected to blast by explosives with an embedded depth of 40 mm. The simulation results were basically consistent with the experimental results. According to the results of numerical simulation, the rule that the attenuation speed of the explosion shock wave along the radial direction of target was greater than that along the axial direction was obtained, which verified the validity of the model. Then, by adjusting the parameters related to the compressive strength, tensile strength and tensile toughness in the modified K&C model, the damage patterns of the UHTCC targets with different compressive and tensile strengths and tensile toughness were predicted. It is found that enhancing the toughness of UHTCC can effectively prevent the target from undergoing overall damage, increasing the tensile strength of UHTCC can reduce the cratering diameter of the blasting surface, and increasing the compressive strength of the material has no obvious effect on reducing the cratering size. These studies can provide a basis for the application of UHTCC materials in protection engineering.
  • loading
  • [1]
    巫绪涛. 钢纤维高强混凝土动态力学性质的研究 [D]. 合肥: 中国科学技术大学, 2006. DOI: 10.7666/d.y919065.
    [2]
    王涛, 余文力, 王少龙, 等. 国外钻地武器的现状与发展趋势 [J]. 导弹与航天运载技术, 2005(5): 51–56. DOI: 10.3969/j.issn.1004-7182.2005.05.011.

    WANG T, YU W L, WANG S L, et al. Present status and tendency of foreign earth-penetrating weapons [J]. Missiles and Space Vehicles, 2005(5): 51–56. DOI: 10.3969/j.issn.1004-7182.2005.05.011.
    [3]
    邓国强, 杨秀敏. 钻地弹重复打击效应现场试验研究 [J]. 防护工程, 2012, 34(5): 1–5.

    DENG G Q, YANG X M. Experimental investigation into damage effects of repeated attacks of precision-guided penetration weapons [J]. Protective Engineering, 2012, 34(5): 1–5.
    [4]
    KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. DOI: 10.1016/0029-5493(76)90015-7.
    [5]
    王成, 付晓磊, 宁建国. 柱形装药爆炸破坏混凝土的数值模拟分析 [J]. 计算力学学报, 2007, 24(3): 318–322. DOI: 10.3969/j.issn.1007-4708.2007.03.012.

    WANG C, FU X L, NING J G. Numerical simulation of cylindrical charge damaging concrete medium [J]. Chinese Journal of Computational Mechanics, 2007, 24(3): 318–322. DOI: 10.3969/j.issn.1007-4708.2007.03.012.
    [6]
    LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
    [7]
    李庆华, 赵昕, 徐世烺. 纳米二氧化硅改性超高韧性水泥基复合材料冲击压缩试验研究 [J]. 工程力学, 2017, 34(2): 85–93. DOI: 10.6052/j.issn.1000-4750.2015.06.0477.

    LI Q H, ZHAO X, XU S L. Impact compression properties of Nano-SiO2 modified ultra high toughness cementitious composites using a split Hopkinson pressure bar [J]. Engineering Mechanics, 2017, 34(2): 85–93. DOI: 10.6052/j.issn.1000-4750.2015.06.0477.
    [8]
    LI H D, XU S L, LEUNG C K Y. Tensile and flexural properties of ultra high toughness cemontious composite [J]. Journal of Wuhan University of Technology-Materials Science Edition, 2009, 24(4): 677–683. DOI: 10.1007/s11595-009-4677-5.
    [9]
    LI V C, MISHRA D K, WU H C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites [J]. Materials and Structures, 1995, 28(10): 586–595. DOI: 10.1007/BF02473191.
    [10]
    LI V C, WANG S X, WU C. Tensile strain-hardening behavior of Polyvinyl Alcohol Engineered Cementitious composite (PVA-ECC) [J]. ACI Materials Journal, 2001, 98(6): 483–492.
    [11]
    LI V C, HASHIDA T. Engineering ductile fracture in brittle-matrix composites [J]. Materials Letter, 1993, 12(12): 898–901. DOI: 10.1007/BF00455611.
    [12]
    徐世烺, 李贺东. 超高韧性水泥基复合材料直接拉伸试验研究 [J]. 土木工程学报, 2009, 42(9): 32–41. DOI: 10.3321/j.issn:1000-131X.2009.09.005.

    XU S L, LI H D. Uniaxial tensile experiments of ultra-high toughness cementitious composite [J]. China Civil Engineering Journal, 2009, 42(9): 32–41. DOI: 10.3321/j.issn:1000-131X.2009.09.005.
    [13]
    徐世烺, 蔡向荣. 超高韧性纤维增强水泥基复合材料基本力学性能 [J]. 水利学报, 2009, 40(9): 1055–1063. DOI: 10.3321/j.issn:0559-9350.2009.09.005.

    XU S L, CAI X R. Experimental study on mechanical properties of ultra-high toughness fiber reinforced cementitious composite [J]. Journal of Hydraulic Engineering, 2009, 40(9): 1055–1063. DOI: 10.3321/j.issn:0559-9350.2009.09.005.
    [14]
    徐世烺, 蔡新华, 李贺东. 超高韧性水泥基复合材料抗冻耐久性能试验研究 [J]. 土木工程学报, 2009, 42(9): 42–46. DOI: 10.3321/j.issn:1000-131X.2009.09.006.

    XU S L, CAI X H, LI H D. Experimental study of the durability properties of ultra-high toughness cementitious composites under freezing and thawing cycles [J]. China Civil Engineering Journal, 2009, 42(9): 42–46. DOI: 10.3321/j.issn:1000-131X.2009.09.006.
    [15]
    刘问. 超高韧性水泥基复合材料冲击、断裂、疲劳及疲劳裂纹扩展性能的试验研究 [D]. 大连: 大连理工大学, 2011.
    [16]
    李庆华, 舒程岚青, 徐世烺. 超高韧性水泥基复合材料的层裂试验研究 [J]. 工程力学, 2020, 37(4): 51–59. DOI: 10.6052/j.issn.1000-4750.2019.02.0060.

    LI Q H, SHU C L Q, XU S L. Experimental study on spall behavior of ultra-high toughness cementitious composites [J]. Engineering Mechanics, 2020, 37(4): 51–59. DOI: 10.6052/j.issn.1000-4750.2019.02.0060.
    [17]
    MAALEJ M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. Journal of Materials in Civil Engineering, 2005, 17(2): 143–152. DOI: 10.1061/(asce)0899-1561(2005)17: 2(143).
    [18]
    LI J, ZHANG Y X. Evaluation of constitutive models of hybrid-fibre engineered cementitious composites under dynamic loadings [J]. Construction and Building Materials, 2012, 30: 149–160. DOI: 10.1016/j.conbuildmat.2011.11.031.
    [19]
    陈超. 超高韧性水泥基复合材料动态力学性能的数值模拟研究[D]. 杭州: 浙江大学, 2018.
    [20]
    徐世烺, 李锐, 李庆华, 等. 超高韧性水泥基复合材料功能梯度板接触爆炸数值模拟 [J]. 工程力学, 2020, 37(8): 123–133, 178. DOI: 10.6052/j.issn.1000-4750.2019.09.0548.

    XU S L, LI R, LI Q H, et al. Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion [J]. Engineering Mechanics, 2020, 37(8): 123–133, 178. DOI: 10.6052/j.issn.1000-4750.2019.09.0548.
    [21]
    ASTM. Standard test method for static modulus of elasticity and poisson’s ratio of concrete: C469 [S]. West Conshohocken, PA: Annual Book of ASTM Standards, 2011.
    [22]
    Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC) [M]. Tokyo: Japan Society of Civil Engineers, 2007.
    [23]
    佘伟, 张云升, 孙伟, 等. 绿色超高性能纤维增强水泥基防护材料抗侵彻、抗爆炸试验研究 [J]. 岩石力学与工程学报, 2011, 30(S1): 2777–2783.

    SHE W, ZHANG Y S, SUN W, et al. Experimental research on anti-penetration and anti-explosion properties of green ultra-high performance fiber reinforced cement-based protective materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2777–2783.
    [24]
    戎志丹, 孙伟, 张云升, 等. 超高性能水泥基复合材料的抗爆炸性能 [J]. 爆炸与冲击, 2010, 30(3): 232–238. DOI: 10.11883/1001-1455(2010)03-0232-07.

    RONG Z D, SUN W, ZHANG Y S, et al. Characteristics of ultra-high performance cementitious composites under explosion [J]. Explosion and Shock Waves, 2010, 30(3): 232–238. DOI: 10.11883/1001-1455(2010)03-0232-07.
    [25]
    程扬帆. 基于储氢材料的高能乳化炸药爆轰机理和爆炸性能研究[D]. 合肥: 中国科学技术大学, 2014.
    [26]
    宁建国, 王成, 马天宝. 爆炸与冲击动力学[M]. 北京: 国防工业出版社, 2010: 145−155.
    [27]
    徐世烺, 吴平, 李庆华, 等. 超高韧性水泥基复合材料K&C模型参数的确定 [J/OL]. 建筑结构学报, 2021: 1−16[2021-03-09]. https://kns.cnki.net/kcms/detail/detail.aspx?doi= 10.14006/j.jzjgxb.2020.0587. DOI: 10.14006/j.jzjgxb.2020.0587.

    XU S L, WU P, LI Q H, et al. Determination of K&C model parameters for ultra-high toughness cementitious composites [J/OL]. Journal of Building Structures, 2021: 1−16[2021-03-09]. https://kns.cnki.net/kcms/detail/detail.aspx?doi= 10.14006/j.jzjgxb.2020.0587. DOI: 10.14006/j.jzjgxb.2020.0587.
    [28]
    Livermore Software Technology Corporation. LS-DYNA Keyword User’s manual version 970 [M]. Livermore: Livermore Software Technology Corporation, 2003.
    [29]
    WANG J. Simulation of landmine explosion using LS-DYNA3D software: benchmark work of simulation of explosion in soil and air: DSTO-TR-1168 [R]. Australia: Weapons Systems Division Aeronautical and Maritime Research Laboratory, 2001.
    [30]
    FENG W H, CHEN B Y, YANG F, et al. Numerical study on blast responses of rubberized concrete slabs using the Karagozian and Case concrete model [J]. Journal of Building Engineering, 2021, 33: 101610. DOI: 10.1016/j.jobe.2020.101610.
    [31]
    LI J, WU C Q, HAO H. An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads [J]. Materials & Design, 2015, 82: 64–76. DOI: 10.1016/j.matdes.2015.05.045.
    [32]
    HONG J, FANG Q, CHEN L, et al. Numerical predictions of concrete slabs under contact explosion by modified K& C material model [J]. Construction and Building Materials, 2017, 155: 1013–1024. DOI: 10.1016/j.conbuildmat.2017.08.060.
    [33]
    赵凯, 王肖钧, 卞梁, 等. 混凝土介质中不同药形装药爆炸波传播特性的数值模拟 [J]. 中国科学技术大学学报, 2007, 37(7): 711–716. DOI: 10.3969/j.issn.0253-2778.2007.07.004.

    ZHAO K, WANG X J, BIAN L, et al. Numerical study on the propagation and damage behavior of the blasting wave with differently shaped explosives in concrete [J]. Journal of University of Science and Technology of China, 2007, 37(7): 711–716. DOI: 10.3969/j.issn.0253-2778.2007.07.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(6)

    Article Metrics

    Article views (437) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return