Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
ZHANG Tao, YU Liyuan, SU Haijian, LUO Ning, WEI Jiangbo. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation[J]. Explosion And Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089
Citation: ZHANG Tao, YU Liyuan, SU Haijian, LUO Ning, WEI Jiangbo. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation[J]. Explosion And Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089

Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation

doi: 10.11883/bzycj-2021-0089
  • Received Date: 2021-03-16
  • Rev Recd Date: 2021-06-19
  • Available Online: 2021-10-29
  • Publish Date: 2022-01-20
  • To investigate the mechanical characteristics of static fracture of marble subjected to dynamic damage after cyclic impacts, based on the modeling technology of the finite difference method (FDM) and the discrete element method (DEM) coupling, a three-dimensional numerical model of the split Hopkinson pressure bar (SHPB) was constructed, and the bar system and rock sample were modeled using FLAC3D and PFC3D programs, respectively. The numerical cyclic impact loading tests were carried out on notched semi-circular bend (NSCB) samples at a constant impact velocity, and then the static three-point bending fracture tests were simulated on these damaged samples. The coordinate data of the particles on fracture surfaces of the sample were extracted by compiling the Fish program, and then the fracture surface was reconstructed and the surface roughness was calculated quantitatively. The rationality and reliability of the numerical analysis were verified by comparison with the results of relevant laboratory tests. The results show that in the cyclic impact loading test, the stress-strain curve rebounds, resulting from the release of part of the stored strain energy during the unloading period. With the increase of the impact number n, the numbers of cracks and fragments generated increase. The connected force field becomes more and more chaotic and the number of broken force chains displays an increasing trend. The breakage of the force chains is the root cause of the deterioration of mechanical properties of the sample. The static fracture toughness of the sample after 5 times of impact is 53.35% lower than that of the natural sample, while the failure displacement increases. In the static loading process, more and more cracks and fragments generate as n increases. This is proof that the internal structure of the sample has been damaged in the cyclic impacts. The fracture surface roughness increases as the impact number increases. The research conclusions can provide certain guidance for the engineering practice.
  • loading
  • [1]
    何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究 [J]. 岩石力学与工程学报, 2005, 24(16): 2803–2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001.

    HE M C, XIE H P, PENG S P, et al. Study on rock mechanics in deep mining engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803–2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001.
    [2]
    钱七虎. 地下工程建设安全面临的挑战与对策 [J]. 岩石力学与工程学报, 2012, 31(10): 1945–1956. DOI: 10.3969/j.issn.1000-6915.2012.10.001.

    QIAN Q H. Challenges faced by underground projects construction safety and countermeasures [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945–1956. DOI: 10.3969/j.issn.1000-6915.2012.10.001.
    [3]
    刘达, 卢文波, 陈明, 等. 隧洞钻爆开挖爆破振动主频衰减公式研究 [J]. 岩石力学与工程学报, 2018, 37(9): 2015–2026. DOI: 10.13722/j.cnki.jrme.2018.0311.

    LIU D, LU W B, CHEN M, et al. Attenuation formula of the dominant frequency of blasting vibration during tunnel excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2015–2026. DOI: 10.13722/j.cnki.jrme.2018.0311.
    [4]
    单仁亮, 宋立伟, 白瑶, 等. 爆破作用下冻结岩壁损伤评价的模型试验研究 [J]. 岩石力学与工程学报, 2014, 33(10): 1945–1952. DOI: 10.13722/j.cnki.jrme.2014.10.001.

    SHAN R L, SONG L W, BAI Y, et al. Model test studies of damage evaluation of frozen rock wall under blasting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1945–1952. DOI: 10.13722/j.cnki.jrme.2014.10.001.
    [5]
    刘亮, 卢文波, 陈明, 等. 钻爆开挖条件下岩体临界破碎状态的损伤阈值统计研究 [J]. 岩石力学与工程学报, 2016, 35(6): 1133–1140. DOI: 10.13722/j.cnki.jrme.2015.0851.

    LIU L, LU W B, CHEN M, et al. Statistic damage threshold of critical broken rock mass under blasting load [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1133–1140. DOI: 10.13722/j.cnki.jrme.2015.0851.
    [6]
    闫长斌. 基于声波频谱特征的岩体爆破累积损伤效应分析 [J]. 岩土力学, 2017, 38(9): 2721–2727, 2745. DOI: 10.16285/j.rsm.2017.09.033.

    YAN C B. Analysis of cumulative damage effect of rock mass blasting based on acoustic frequency spectrum characters [J]. Rock and Soil Mechanics, 2017, 38(9): 2721–2727, 2745. DOI: 10.16285/j.rsm.2017.09.033.
    [7]
    XIONG J J, SHENOI R A. A two-stage theory on fatigue damage and life prediction of composites [J]. Composites Science and Technology, 2004, 64(9): 1331–1343. DOI: 10.1016/j.compscitech.2003.10.006.
    [8]
    金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [9]
    金解放, 李夕兵, 殷志强, 等. 轴压和围压对循环冲击下砂岩能量耗散的影响 [J]. 岩土力学, 2013, 34(11): 3096–3102, 3109. DOI: 10.16285/j.rsm.2013.11.007.

    JIN J F, LI X B, YIN Z Q, et al. Effects of axial compression and confining pressure on energy dissipation of sandstone under cyclic impact loads [J]. Rock and Soil Mechanics, 2013, 34(11): 3096–3102, 3109. DOI: 10.16285/j.rsm.2013.11.007.
    [10]
    WANG Z L, TIAN N C, WANG J G, et al. Experimental study on damage mechanical characteristics of heat-treated granite under repeated impact [J]. Journal of Materials in Civil Engineering, 2018, 30(11): 04018274. DOI: 10.1061/(ASCE)MT.1943-5533.0002465.
    [11]
    LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [12]
    林大能, 陈寿如. 循环冲击荷载作用下岩石损伤规律的试验研究 [J]. 岩石力学与工程学报, 2005, 24(22): 4094–4098. DOI: 10.3321/j.issn:1000-6915.2005.22.014.

    LIN D N, CHEN S R. Experimental study on damage evolution law of rock under cyclical impact loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(22): 4094–4098. DOI: 10.3321/j.issn:1000-6915.2005.22.014.
    [13]
    王彤, 宋战平, 杨建永. 循环冲击作用下风化红砂岩动态响应特性 [J]. 岩石力学与工程学报, 2019, 38(S1): 2772–2778. DOI: 10.13722/j.cnki.jrme.2018.1448.

    WANG T, SONG Z P, YANG J Y. Dynamic response characteristics of weathered red sandstone under cyclic impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2772–2778. DOI: 10.13722/j.cnki.jrme.2018.1448.
    [14]
    左建平, 周宏伟, 范雄, 等. 三点弯曲下热处理北山花岗岩的断裂特性研究 [J]. 岩石力学与工程学报, 2013, 32(12): 2422–2430.

    ZUO J P, ZHOU H W, FAN X, et al. Research on fracture behavior of Beishan granite after heat treatment under three-point bending [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2422–2430.
    [15]
    贺晶晶, 师俊平. 冻融循环作用下砂岩三点弯曲断裂性能试验及其破坏形态研究 [J]. 岩石力学与工程学报, 2017, 36(12): 2917–2925. DOI: 10.13722/j.cnki.jrme.2017.0778.

    HE J J, SHI J P. Fracturing behavior and failure pattern of sandstone in three-point bending test under freezing-thawing cycles [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2917–2925. DOI: 10.13722/j.cnki.jrme.2017.0778.
    [16]
    杨健锋, 梁卫国, 陈跃都, 等. 不同水损伤程度下泥岩断裂力学特性试验研究 [J]. 岩石力学与工程学报, 2017, 36(10): 2431–2440. DOI: 10.13722/j.cnki.jrme.2017.0690.

    YANG J F, LIANG W G, CHEN Y D, et al. Experiment research on the fracturing characteristics of mudstone with different degrees of water damage [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2431–2440. DOI: 10.13722/j.cnki.jrme.2017.0690.
    [17]
    HU L Q, LI X B. Damage and fragmentation of rock under experiencing impact load [J]. Journal of Central South University of Technology, 2006, 13(4): 432–437. DOI: 10.1007/s11771-006-0063-z.
    [18]
    付安琪, 蔚立元, 苏海健, 等. 循环冲击损伤后大理岩静态断裂力学特性研究 [J]. 岩石力学与工程学报, 2019, 38(10): 2021–2030. DOI: 10.13722/j.cnki.jrme.2019.0323.

    FU A Q, YU L Y, SU H J, et al. Experimental study on static fracturing mechanical characteristics of marble after cyclic impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2021–2030. DOI: 10.13722/j.cnki.jrme.2019.0323.
    [19]
    汪小梦, 朱哲明, 施泽彬, 等. 基于VB-SCSC岩石试样的动态断裂韧度测试方法研究 [J]. 岩石力学与工程学报, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.

    WANG X M, ZHU Z M, SHI Z B, et al. A method measuring dynamic fracture toughness of rock using VB-SCSC specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.
    [20]
    周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.

    ZHOU L, ZHU Z M, DONG Y Q, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
    [21]
    DU H B, DAI F, XU Y, et al. Numerical investigation on the dynamic strength and failure behavior of rocks under hydrostatic confinement in SHPB testing [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 108: 43–57. DOI: 10.1016/j.ijrmms.2018.05.008.
    [22]
    XU Y, DAI F, XU N W, et al. Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing [J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 731–745. DOI: 10.1007/s00603-015-0787-x.
    [23]
    LI X B, ZOU Y, ZHOU Z L. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1693–1709. DOI: 10.1007/s00603-013-0484-6.
    [24]
    WANG P, YIN T B, LI X B, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 991–1010. DOI: 10.1007/s00603-018-1606-y.
    [25]
    LI D Y, HAN Z Y, SUN X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623–1643. DOI: 10.1007/s00603-018-1652-5.
    [26]
    付龙龙, 周顺华, 田志尧, 等. 双轴压缩条件下颗粒材料中力链的演化 [J]. 岩土力学, 2019, 40(6): 2427–2434. DOI: 10.16285/j.rsm.2018.1212.

    FU L L, ZHOU S H, TIAN Z Y, et al. Force chain evolution in granular materials during biaxial compression [J]. Rock and Soil Mechanics, 2019, 40(6): 2427–2434. DOI: 10.16285/j.rsm.2018.1212.
    [27]
    KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-Suggested method for determining the mode Ⅰ static fracture toughness using semi-circular bend specimen [J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267–274. DOI: 10.1007/s00603-013-0422-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (432) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return