Citation: | YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114 |
[1] |
胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
|
[2] |
徐松林, 单俊芳, 王鹏飞. 脆性材料高应变率压缩失效机制综述与研究进展 [J]. 现代应用物理, 2020, 11(3): 30101. DOI: 10.12061/j.issn.2095-6223.2020.030101.
XU S L, SHAN J F, WANG P F. Review and research progress of dynamic failure mechanism for brittle materials under high strain rate [J]. Modern Applied Physics, 2020, 11(3): 30101. DOI: 10.12061/j.issn.2095-6223.2020.030101.
|
[3] |
TANG Z P, XU S L, DAI X Y, et al. S-wave tracing technique to investigate the damage and failure behavior of brittle materials subjected to shock loading [J]. International Journal of Impact Engineering, 2005, 31(9): 1172–1191. DOI: 10.1016/j.ijimpeng.2004.07.005.
|
[4] |
XU S L, HUANG J Y, WANG P F, et al. Investigation of rock material under combined compression and shear dynamic loading: an experimental technique [J]. International Journal of Impact Engineering, 2015, 86: 206–222. DOI: 10.1016/j.ijimpeng.2015.07.014.
|
[5] |
王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 29−35.
|
[6] |
王鹏飞, 徐松林, 郑航, 等. 变形模式对多孔金属材料SHPB实验结果的影响 [J]. 力学学报, 2012, 44(5): 928–932. DOI: 10.6052/0459-1879-11-354.
WANG P F, XU S L, ZHENG H, et al. Influence of deformation modes on SHPB experimental results of cellular metal [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928–932. DOI: 10.6052/0459-1879-11-354.
|
[7] |
WANG P F, XU S L, LI Z B, et al. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading [J]. Materials Science and Engineering: A, 2015, 620: 253–261. DOI: 10.1016/j.msea.2014.10.026.
|
[8] |
徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
|
[9] |
徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [J]. 振动与冲击, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.
XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings [J]. Journal of Vibration and Shock, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.
|
[10] |
XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. DOI: 10.1016/j.mechmat.2019.103220.
|
[11] |
GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: Ⅰ: experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869–886. DOI: 10.1016/S0734-743X(01)00020-3.
|
[12] |
高光发. 混凝土材料动态压缩强度的应变率强化规律 [J]. 高压物理学报, 2017, 31(3): 261–270. DOI: 10.11858/gywlxb.2017.03.007.
GAO G F. Effect of strain-rate hardening on dynamic compressive strength of plain concrete [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261–270. DOI: 10.11858/gywlxb.2017.03.007.
|
[13] |
LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures, 2003, 40(2): 343–360. DOI: 10.1016/S0020-7683(02)00526-7.
|
[14] |
MENG H, LI Q M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments [J]. International Journal of Impact Engineering, 2003, 28(5): 537–555. DOI: 10.1016/S0734-743X(02)00073-8.
|
[15] |
MENG H, LI Q M. Modification of SHPB set-up to minimize wave dispersion and attenuation effects [J]. International Journal of Impact Engineering, 2003, 28(6): 677–696. DOI: 10.1016/S0734-743X(02)00124-0.
|
[16] |
LI Q M, LU Y B, MENG H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests: Part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(12): 1335–1345. DOI: 10.1016/j.ijimpeng.2009.04.010.
|
[17] |
杨茨, 徐松林, 易洪昇. 冲击载荷下圆环压缩变形特性研究 [J]. 振动与冲击, 2015, 34(11): 128–132,145. DOI: 10.13465/j.cnki.jvs.2015.11.023.
YANG C, XU S L, YI H S. Deformation properties of a ring under impact loading [J]. Chinese Journal of Vibration and Shock, 2015, 34(11): 128–132,145. DOI: 10.13465/j.cnki.jvs.2015.11.023.
|
[18] |
FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2007, 34(3): 405–411. DOI: 10.1016/j.ijimpeng.2005.12.001.
|
[19] |
FORQUIN P, GARY G, GATUINGT F. A testing technique for concrete under confinement at high rates of strain [J]. International Journal of Impact Engineering, 2008, 35(6): 425–446. DOI: 10.1016/j.ijimpeng.2007.04.007.
|
[20] |
HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to larger strains, high strain rates and high pressure [C]//JACKSON N, DICKERT S. 14th International Symposium on Ballistics. USA: American Defense Preparedness Association, 1995: 591−600.
|
[21] |
BAILLY P, DELVARE F, VIAL J, et al. Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests [J]. International Journal of Impact Engineering, 2011, 38(2/3): 73–84. DOI: 10.1016/j.ijimpeng.2010.10.005.
|
[22] |
ALEJANO L R, BOBET A. Drucker-prager criterion [J]. Rock Mechanics and Rock Engineering, 2012, 45(6): 995–999. DOI: 10.1007/s00603-012-0278-2.
|
[23] |
苗春贺, 陈丽娜, 单俊芳, 等. 水泥砂浆抗弹性能研究 [J]. 高压物理学报, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.
MIAO C H, CHEN L N, SHAN J F, et al. Research on the ballistic performance of cement mortar [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.
|
[24] |
刘孝敏, 胡时胜. 大直径SHPB弥散效应的二维数值分析 [J]. 实验力学, 2000, 15(4): 371–376. DOI: 10.3969/j.issn.1001-4888.2000.04.003.
LIU X M, HU S S. Two-dimensional numerical analysis for the dispersion of stress waves in large-diameter-SHPB [J]. Journal of Experimental Mechanics, 2000, 15(4): 371–376. DOI: 10.3969/j.issn.1001-4888.2000.04.003.
|
[25] |
BAI Y L, TENG X Q, WIERZBICKI T. On the application of stress triaxiality formula for plane strain fracture testing [J]. Journal of Engineering Materials and Technology, 2009, 131(2): 021002. DOI: 10.1115/1.3078390.
|
1. | 朱江涛,赵杏. 纤维增强树脂基复合材料筋/拉索数值模拟研究综述. 复合材料学报. 2024(04): 1653-1671 . ![]() | |
2. | 叶海旺,余梦豪,吴家鹏,欧阳枧,龙桂华,雷涛,王炯辉,赵明生,余红兵. 轻轨结构在隧洞掘进爆破下的响应数值模拟. 工程爆破. 2024(02): 49-57 . ![]() | |
3. | 王志亮,余浪浪. 深部大理岩真三轴力学特性离散元和有限差分耦合分析. 爆炸与冲击. 2024(07): 126-138 . ![]() | |
4. | 陈美多,张祥林,袁良柱,赵巨岩,王鹏飞,马昊,徐松林. 岩石界面的动态剪切扩散行为. 爆炸与冲击. 2024(08): 46-61 . ![]() | |
5. | 陈猛,田矣涵,崔秀文,张通. 岩石-钢纤维混凝土复合层动态抗压强度计算模型. 岩土工程学报. 2024(10): 2229-2236 . ![]() | |
6. | 周子清,王鹏飞,徐松林. 基于Tersoff势的晶格中波动传播. 爆炸与冲击. 2024(09): 36-49 . ![]() | |
7. | 苗春贺,徐松林,马昊,袁良柱,陆建华,王鹏飞. 递进式凸轮加载的中等应变率实验技术. 爆炸与冲击. 2023(03): 128-137 . ![]() | |
8. | 田珂. 二元信息挖掘多模型融合异常弹着靶速度预测. 弹道学报. 2023(02): 102-110 . ![]() | |
9. | 刘泽军,赵柳,李艳,褚颜贵. 不同长径比聚乙烯醇(PVA)/高延性纤维增强水泥基复合材料(ECC)动态压缩性能. 复合材料学报. 2023(12): 6859-6870 . ![]() | |
10. | 刘锋,李庆明. 混凝土类材料动态压缩强度在多维应力状态下的应变率效应. 爆炸与冲击. 2022(09): 125-140 . ![]() | |
11. | 常聚才,齐潮,殷志强,史文豹,贺凯,吴昊原. 动载作用下端锚锚固体力学响应特征研究. 岩土力学. 2022(12): 3294-3304 . ![]() |