Volume 42 Issue 4
May  2022
Turn off MathJax
Article Contents
KONG Xiangshao, YANG Bao, ZHOU Hu, ZHENG Cheng, LIU Fang, WU Weiguo. Optimal design of ballistic performance of fiber-metal laminates based on the response surface method[J]. Explosion And Shock Waves, 2022, 42(4): 043301. doi: 10.11883/bzycj-2021-0146
Citation: KONG Xiangshao, YANG Bao, ZHOU Hu, ZHENG Cheng, LIU Fang, WU Weiguo. Optimal design of ballistic performance of fiber-metal laminates based on the response surface method[J]. Explosion And Shock Waves, 2022, 42(4): 043301. doi: 10.11883/bzycj-2021-0146

Optimal design of ballistic performance of fiber-metal laminates based on the response surface method

doi: 10.11883/bzycj-2021-0146
  • Received Date: 2021-04-20
  • Accepted Date: 2022-03-28
  • Rev Recd Date: 2022-01-14
  • Available Online: 2022-04-07
  • Publish Date: 2022-05-09
  • Fiber-metal laminates are highly designable due to the characteristics of their constituent materials and laminate structure. They have the characteristics of anisotropy, large interface differences, and flexible design. Optimizing the design of fiber-metal laminates is of great significance to the enhancement of its mechanical properties and weight reduction. In order to improve the ballistic performance of fiber-metal laminates, of which the layer direction and layer thickness are optimized based on the response surface analysis method. For layup direction optimization, several layup directions are designed based on the corresponding principles according to the composite material layup optimization design requirements, and the energy absorptions of the corresponding structures are calculated, respectively, then the design plan for the better layup direction is screened out. For the optimization of ply thickness, the relative thickness ratio of each ply of the fiber-metal laminate is used as the design variable, and the specific energy absorption of the structure is the design goal. The Box-Behnken method is used to design the experiment. According to the test plan, the explicit dynamic calculation program ABAQUS/Explicit is used for parametric modeling to obtain test sample points, and the design test samples are analyzed by using variance analysis and parameter estimation, and the response surface model of structural specific energy absorption (SEA) is established. The errors between the experimental values and the predicted values are compared, and the model can be used for prediction; the genetic algorithm is used to optimize the obtained response surface equation, and the optimization effect is verified by ABAQUS/Explicit. The optimization result shows that the accuracy of the obtained response surface model is high. Under the premise of not increasing the thickness and weight of the laminate, the best layup plan is finally obtained, which improves the energy absorption capacity of the laminate. Finally, the mass of laminates decreases by 11.70% and the energy absorption increases by 19.40% under the optimal lamination scheme.
  • loading
  • [1]
    REYES VILLANUEVA G, CANTWELL W J. The high velocity impact response of composite and FML-reinforced sandwich structures [J]. Composites Science and Technology, 2004, 64(1): 35–54. DOI: 10.1016/S0266-3538(03)00197-0.
    [2]
    KABOGLU C, MOHAGHEGHIAN I, ZHOU J, et al. High-velocity impact deformation and perforation of fibre metal laminates [J]. Journal of Materials Science, 2018, 53: 4209–4228. DOI: 10.1007/s10853-017-1871-2.
    [3]
    SANTIAGO R, CANTWELL W, ALVES M. Impact on thermoplastic fibre-metal laminates: experimental observations [J]. Composite Structures, 2017, 159: 800–817. DOI: 10.1006/j.compstruct.2016.10.011.
    [4]
    曾漾, 周俊, 沈志远, 等. 基于响应面法的复合材料舱壁结构优化设计 [J]. 重庆大学学报, 2020, 43(6): 82–89. DOI: 10.11835/j.issn.1000-582X.2020.292.

    ZENG Y, ZHOU J, SHEN Z Y, et al. Optimization design of composite bulkhead structure based on response surface method [J]. Journal of Chongqing University, 2020, 43(6): 82–89. DOI: 10.11835/j.issn.1000-582X.2020.292.
    [5]
    周晓松, 梅志远. 舰船复合材料夹层板架结构的分级递进优化设计方法 [J]. 中国舰船研究, 2014, 9(4): 63–69. DOI: 10.3969/j.issn.1673-3185.2014.04.010.

    ZHOU X S, MEI Z Y. Hierarchical progressive optimum design method for composite stiffened panels of warships [J]. Chinese Journal of Ship Research, 2014, 9(4): 63–69. DOI: 10.3969/j.issn.1673-3185.2014.04.010.
    [6]
    刘伟先, 穆雪峰, 曾果. 复合材料蜂窝夹层进气道结构优化设计方法 [J]. 南京航空航天大学学报, 2018, 50(1): 86–90. DOI: 10.16356/j.1005-2615.2018.01.012.

    LIU W X, MU X F, ZENG G. Optimization design of composite honeycomb sandlayer inlet structure [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(1): 86–90. DOI: 10.16356/j.1005-2615.2018.01.012.
    [7]
    胡春幸, 侯玉亮, 铁瑛, 等. 基于遗传算法的碳纤维增强树脂复合材料层合板单搭胶接结构的多目标优化 [J]. 复合材料学报, 2021, 38(6): 1847–1858. DOI: 10.13801/j.cnki.fhclxb.20200824.001.

    HU C X, HOU Y L, TIE Y, et al. Multi-objective optimization of adhesively bonded single-lap joints of carbon fiber reinforced polymer laminates based on genetic algorithm [J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1847–1858. DOI: 10.13801/j.cnki.fhclxb.20200824.001.
    [8]
    胡春幸, 侯玉亮, 铁瑛, 等. 不同胶接参数对CFRP层合板单搭胶接结构强度的影响及优化设计 [J]. 机械工程学报, 2021, 57(8): 154–165. DOI: 10.3901/JME.2021.08.154.

    HU C X, HOU Y L, TIE Y, et al. Influence of different bonding parameters on the strength of CFRP laminates with single lap bonding structure and optimization [J]. Journal of Mechanical Engineering, 2021, 57(8): 154–165. DOI: 10.3901/JME.2021.08.154.
    [9]
    MOSTOFI T M, SAYAH-BADKHOR M, REZASEFAT M, et al. Gas mixture detonation load on polyurea-coated aluminum plates [J]. Thin-Walled Structures, 2020, 155: 106851. DOI: 10.1016/j.tws.2020.106851.
    [10]
    王振, 宋凯, 朱国华, 等. 单向碳纤维复合材料锥管轴向吸能特性研究 [J]. 振动与冲击, 2018, 37(7): 172–178. DOI: 10.13465/j.cnki.jvs.2018.07.026.

    WANG Z, SONG K, ZHU G H, et al. Axial energy absorption characteristics of unidirectional carbon-fiber composite cone tubes [J]. Journal of Vibration and Shock, 2018, 37(7): 172–178. DOI: 10.13465/j.cnki.jvs.2018.07.026.
    [11]
    顾杰斐, 陈普会, 孔斌, 等. 考虑制造因素的变刚度层合板的抗屈曲铺层优化设计 [J]. 复合材料学报, 2018, 35(4): 866–875. DOI: 10.13801/j.cnki.fhclxb.20170705.001.

    GU J F, CHEN P H, KONG B, et al. Layup optimization for maximum buckling load of variable-stiffness laminates considering manufacturing factors [J]. Acta Materiae Compositae Sinica, 2018, 35(4): 866–875. DOI: 10.13801/j.cnki.fhclxb.20170705.001.
    [12]
    冯振宇, 苏璇, 赵彦强, 等. 含概率不确定性的复合材料吸能结构优化设计方法研究 [J]. 振动与冲击, 2019, 38(11): 101–109. DOI: 10.13465/j.cnki.jvs.2019.11.016.

    FENG Z Y, SU X, ZHAO Y Q, et al. Optimization design method for energy-absorbing composite structure with probabilistic uncertainty [J]. Journal of Vibration and Shock, 2019, 38(11): 101–109. DOI: 10.13465/j.cnki.jvs.2019.11.016.
    [13]
    CUTOLO A, CAROTENUTO A R, PALUMBO S, et al. Stacking sequences in composite laminates through design optimization [J]. Meccanica, 2021, 56: 1555–1574. DOI: 10.1007/s11012-020-01233-y.
    [14]
    GHASHOCHI-BARGH H, SADR M H. PSO algorithm for fundamental frequency optimization of fiber metal laminated panels [J]. Structural Engineering and Mechanics, 2013, 47(5): 713–727. DOI: 10.12989/sem.2013.47.5.713.
    [15]
    ARHORE E G, YASAEE M, et al. Lay-up optimisation of fibre-metal laminates panels for maximum impact absorption [J]. Journal of Composite Materials, 2020, 54(29): 4591–4609. DOI: 10.1177/0021998320937396.
    [16]
    SITNIKOVA E, GUAN Z W, CANTWELL W J. The analysis of the ultimate blast failure modes in fibre metal laminates [J]. Composites Science and Technology, 2016, 135: 1–12. DOI: 10.1016/j.compscitech.2016.09.006.
    [17]
    王耀先. 复合材料结构设计 [M]. 北京: 化学工业出版社, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(11)

    Article Metrics

    Article views (433) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return