Volume 42 Issue 3
Apr.  2022
Turn off MathJax
Article Contents
ZHAO Zhujie, HOU Hailiang, LI Dian, WANG Ke, YAO Menglei. In-plane dynamic mechanical properties of partially liquid filled multicell structure[J]. Explosion And Shock Waves, 2022, 42(3): 033103. doi: 10.11883/bzycj-2021-0173
Citation: ZHAO Zhujie, HOU Hailiang, LI Dian, WANG Ke, YAO Menglei. In-plane dynamic mechanical properties of partially liquid filled multicell structure[J]. Explosion And Shock Waves, 2022, 42(3): 033103. doi: 10.11883/bzycj-2021-0173

In-plane dynamic mechanical properties of partially liquid filled multicell structure

doi: 10.11883/bzycj-2021-0173
  • Received Date: 2021-05-07
  • Accepted Date: 2022-01-24
  • Rev Recd Date: 2021-07-01
  • Available Online: 2022-02-23
  • Publish Date: 2022-04-07
  • In order to investigate the impact protection performance of partially liquid filled multicell structure, the two-dimensional FEM numerical analysis of the impact dynamic characteristics of liquid filled inner concave cell structure, unfilled inner concave cell structure, partially liquid filled inner concave multicell structure and unfilled inner concave multicell structure was established by combining the drop hammer impact test of liquid filled and unfilled inner concave cell structure. The deformation/failure mode of partially liquid filled inner concave multicell structure was obtained, and the dynamic response characteristics and energy absorption characteristics of partially liquid filled inner concave multicell structures at different impact velocities were discussed by using the initial load weakening factor and the strain energy per unit volume, respectively. The results show that after the breakage of the liquid filled cell, the water medium will flow into the adjacent unfilled cell, developing a secondary bulging energy absorption effect, thus effectively increasing the deformation energy absorption level of the structure wall; the deformation damage modes of the liquid filled and unfilled regions of the structure are bulging tension and flexural bending, respectively; the strain energy per unit volume of the structure and the weakening effect on the initial impact load are enhanced with the increase of the impact velocity. The transverse filling method can be equated with tandem arrangement of variable stiffness springs, which only affects the local stiffness of the structure. And the longitudinal filling method can be equated with a parallel arrangement of multiple layers of variable stiffness springs, which affects the overall stiffness of the structure; the equivalent stiffness of the filled and unfilled regions changes dynamically, and the deformation mode of the structure is determined by the equivalent stiffness of each region in real time. When the load impact velocity is high, both transverse and longitudinal partially liquid filled inner concave multicell structures are superior to the unfilled inner concave multicell structure in weakening the initial impact load.
  • loading
  • [1]
    PAN J, FANG H, XU M C, et al. Dynamic performance of a sandwich structure with honeycomb composite core for bridge pier protection from vehicle impact [J]. Thin-Walled Structures, 2020, 157: 107010. DOI: 10.1016/j.tws.2020.107010.
    [2]
    ZHOU H Y, ZHANG X J, WANG X J, et al. Response of foam concrete-filled aluminum honeycombs subject to quasi-static and dynamic compression [J]. Composite Structures, 2020, 239: 112025. DOI: 10.1016/j.compstruct.2020.112025.
    [3]
    YIN F, CAO W L, XUE S D, et al. Behavior of multicell concrete-filled steel tube columns under eccentric loading [J]. Journal of Constructional Steel Research, 2020, 172: 106218. DOI: 10.1016/j.jcsr.2020.106218.
    [4]
    KOCH S, DUVIGNEAU F, ORSZULIK R, et al. Partial filling of a honeycomb structure by granular materials for vibration and noise reduction [J]. Journal of Sound and Vibration, 2017, 393: 30–40. DOI: 10.1016/j.jsv.2016.11.024.
    [5]
    XIE S C, YANG S C, YANG C X, et al. Sound absorption performance of a filled honeycomb composite structure [J]. Applied Acoustics, 2020, 162: 107202. DOI: 10.1016/j.apacoust.2019.107202.
    [6]
    XIE B, CHENG W L, XU Z M. Studies on the effect of shape-stabilized PCM filled aluminum honeycomb composite material on thermal control [J]. International Journal of Heat and Mass Transfer, 2015, 91: 135–143. DOI: 10.1016/j.ijheatmasstransfer.2015.07.108.
    [7]
    KUMAR S J A, KUMAR S J A. Low-velocity impact damage and energy absorption characteristics of stiffened syntactic foam core sandwich composites [J]. Construction and Building Materials, 2020, 246: 118412. DOI: 10.1016/j.conbuildmat.2020.118412.
    [8]
    杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构 [J]. 爆炸与冲击, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.

    YANG D Q, MA T, ZHANG G L. A novel auxetic broadside defensive structure for naval ships [J]. Explosion and Shock Waves, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.
    [9]
    GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997.
    [10]
    QI D X, LU Q Y, HE C W, et al. Impact energy absorption of functionally graded chiral honeycomb structures [J]. Extreme Mechanics Letters, 2019, 32: 100568. DOI: 10.1016/j.eml.2019.100568.
    [11]
    任毅如, 蒋宏勇, 金其多, 等. 仿生负泊松比拉胀内凹蜂窝结构耐撞性 [J]. 航空学报, 2021, 42(3): 223978. DOI: 10.7527/S1000-6893.2020.23978.

    REN Y R, JIANG H Y, JIN Q D, et al. Crashworthiness of bio-inspired auxetic reentrant honeycomb with negative Poisson’s ratio [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 223978. DOI: 10.7527/S1000-6893.2020.23978.
    [12]
    ZHONG R C, FU M H, CHEN X, et al. A novel three-dimensional mechanical metamaterial with compression-torsion properties [J]. Composite Structures, 2019, 226: 111232. DOI: 10.1016/j.compstruct.2019.111232.
    [13]
    MONTGOMERY S M, KUANG X, ARMSTRONG C D, et al. Recent advances in additive manufacturing of active mechanical metamaterials [J]. Current Opinion in Solid State and Materials Science, 2020, 24(5): 100869. DOI: 10.1016/j.cossms.2020.100869.
    [14]
    ZHOU H Y, JIA K C, WANG X J, et al. Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs [J]. Thin-Walled Structures, 2020, 154: 106898. DOI: 10.1016/j.tws.2020.106898.
    [15]
    XUE T, MENG J G, JIN Z H. Study on the performance of honeycomb ceramics carrier based on the ordinary paper [J]. Materials Science and Engineering: A, 2011, 528(29/30): 8512–8516. DOI: 10.1016/j.msea.2011.07.051.
    [16]
    CHEN X J, YU G C, WANG Z X, et al. Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs [J]. Composite Structures, 2021, 255: 112984. DOI: 10.1016/j.compstruct.2020.112984.
    [17]
    WU H H, SUI L, ZHOU T H, et al. Estimation of lateral stiffness for gypsum-filled cold-formed steel shear walls [J]. Structures, 2021, 32: 28–37. DOI: 10.1016/j.istruc.2021.02.067.
    [18]
    MOHAMADI Y, AHMADI H, RAZMKHAH O, et al. Axial crushing responses of aluminum honeycomb structures filled with elastomeric polyurethane foam [J]. Thin-Walled Structures, 2021, 164: 107785. DOI: 10.1016/j.tws.2021.107785.
    [19]
    LIU Q, FU J, WANG J S, et al. Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam [J]. Composites Part B: Engineering, 2017, 130: 236–247. DOI: 10.1016/j.compositesb.2017.07.041.
    [20]
    BAI J W, LIAO X, HUANG E B, et al. Control of the cell structure of microcellular silicone rubber/nanographite foam for enhanced mechanical performance [J]. Materials & Design, 2017, 133: 288–298. DOI: 10.1016/j.matdes.2017.07.064.
    [21]
    GAO S Z, LI D, HOU H L, et al. Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles [J]. Thin-Walled Structures, 2020, 157: 107119. DOI: 10.1016/j.tws.2020.107119.
    [22]
    何强, 马大为, 张震东. 含随机填充孔圆形蜂窝结构的面内冲击性能 [J]. 爆炸与冲击, 2015, 35(3): 401–408. DOI: 10.11883/1001-1455-(2015)03-0401-08.

    HE Q, MA D W, ZHANG Z D. In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions [J]. Explosion and Shock Waves, 2015, 35(3): 401–408. DOI: 10.11883/1001-1455-(2015)03-0401-08.
    [23]
    CHEN C, LU T J, FLECK N A. Effect of inclusions and holes on the stiffness and strength of honeycombs [J]. International Journal of Mechanical Sciences, 2001, 43(2): 487–504. DOI: 10.1016/S0020-7403(99)00122-8.
    [24]
    PRAKASH O, BICHEBOIS P, BRECHET Y, et al. A note on the deformation behaviour of two-dimensional model cellular structures [J]. Philosophical Magazine A, 1996, 73(3): 739–751. DOI: 10.1080/01418619608242994.
    [25]
    NAKAMOTO H, ADACHI T, ARAKI W. In-plane impact behavior of honeycomb structures filled with linearly arranged inclusions [J]. International Journal of Impact Engineering, 2009, 36(8): 1019–1026. DOI: 10.1016/j.ijimpeng.2009.01.004.
    [26]
    NAKAMOTO H, ADACHI T, ARAKI W. In-plane impact behavior of honeycomb structures randomly filled with rigid inclusions [J]. International Journal of Impact Engineering, 2009, 36(1): 73–80. DOI: 10.1016/j.ijimpeng.2008.04.004.
    [27]
    闫晓刚, 张勇, 林继铭, 等. 新颖圆形多胞复合填充结构的耐撞性 [J]. 复合材料学报, 2018, 35(8): 2166–2176. DOI: 10.13801/j.cnki.fhclxb.20170906.001.

    YAN X G, ZHANG Y, LIN J M, et al. Crashworthiness for novel circular multi-cell composite filling structures [J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2166–2176. DOI: 10.13801/j.cnki.fhclxb.20170906.001.
    [28]
    BAYKASOĞLU A, BAYKASOĞLU C, CETIN E. Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes [J]. Thin-Walled Structures, 2020, 149: 106630. DOI: 10.1016/j.tws.2020.106630.
    [29]
    KIM D H, KIM S W. Evaluation of bird strike-induced damages of helicopter composite fuel tank assembly based on fluid-structure interaction analysis [J]. Composite Structures, 2019, 210: 676–686. DOI: 10.1016/j.compstruct.2018.11.086.
    [30]
    金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.

    JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
    [31]
    GODOY L A. Buckling of vertical oil storage steel tanks: review of static buckling studies [J]. Thin-Walled Structures, 2016, 103: 1–21. DOI: 10.1016/j.tws.2016.01.026.
    [32]
    ZHANG Y H, WU X D, LU G Y, et al. Experimental and numerical studies on dynamic responses of liquid-filled hemispherical shell under axial impact [J]. Thin-Walled Structures, 2018, 131: 606–618. DOI: 10.1016/j.tws.2018.07.003.
    [33]
    CHEN Y, HUANG W, CONSTANTINI S. Blast shock wave mitigation using the hydraulic energy redirection and release technology [J]. PLoS One, 2012, 7(6): e39353. DOI: 10.1371/journal.pone.0039353.
    [34]
    金键, 侯海量, 吴梵, 等. 战斗部近炸下防护液舱破坏机理分析 [J]. 国防科技大学学报, 2019, 41(2): 163–169. DOI: 10.11887/j.cn.201902024.

    JIN J, HOU H L, WU F, et al. Analysis of failure mechanism on protective liquid cabin under warhead close explosion [J]. Journal of National University of Defense Technology, 2019, 41(2): 163–169. DOI: 10.11887/j.cn.201902024.
    [35]
    JIN J, HOU H L, CHEN P Y, et al. Experimental study on the combined damage of liquid cabin structure subjected to charge explosion with preset fragments [J]. International Journal of Impact Engineering, 2019, 130: 19–26. DOI: 10.1016/j.ijimpeng.2019.04.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(6)

    Article Metrics

    Article views (356) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return