Volume 42 Issue 4
May  2022
Turn off MathJax
Article Contents
WEI Jiuqi, LI Lei, WANG Shihe, ZHANG Chunxiao, CAO Shaohua, GAO Jie. Experimental study on local damage effect of ultra-high performance concrete slabs under contact explosion[J]. Explosion And Shock Waves, 2022, 42(4): 042201. doi: 10.11883/bzycj-2021-0174
Citation: WEI Jiuqi, LI Lei, WANG Shihe, ZHANG Chunxiao, CAO Shaohua, GAO Jie. Experimental study on local damage effect of ultra-high performance concrete slabs under contact explosion[J]. Explosion And Shock Waves, 2022, 42(4): 042201. doi: 10.11883/bzycj-2021-0174

Experimental study on local damage effect of ultra-high performance concrete slabs under contact explosion

doi: 10.11883/bzycj-2021-0174
  • Received Date: 2021-05-07
  • Rev Recd Date: 2021-09-15
  • Available Online: 2022-03-10
  • Publish Date: 2022-05-09
  • In order to study the contact explosion resistance of ultra-high performance concrete (UHPC), 24 contact explosion experiments were conducted. The target slabs were cast in UHPC with or without reinforcement, and the compressive strength grades of the UHPCs were C120, C150 and C180. The slabs were laid on supporting ring beams and the back faces of the slabs were free. The TNT was placed on the center of the front face. The size of the target slab was 1.5 m×1.5 m×0.3 m, and the main reinforcements were $\varnothing $12 HRB400 with 200 mm×200 mm grid distance. Based on the experiments, the local failure characteristics of typical reinforced and unreinforced target slabs under the shock of different explosive weights were quantitatively analyzed, and the critical collapse coefficient, compression coefficient and explosion crater coefficient of the UHPC slabs were obtained. The results show that, at the same explosive weight, the damage degree of the UHPC slabs decreases with the compressive strength. The higher the compressive strength, the smaller the compression coefficient and the explosion crater coefficient. When the reinforcement ratio is low, it has little effect on the front crater size and the back collapse damage degree of the UHPC slab, but has a certain role in reducing the residual deflection and crack width at the bottom of the slab. For the UHPCs in this paper, the critical collapse coefficient of the C150 slap is the smallest, no more than 0.251 m/kg1/3; and the C120 slap and C180 slap are similar, no more than 0.285 m/kg1/3. The critical collapse coefficients of the C180 UHPC is not the smallest because there are more steel fibers in the horizontal direction than in the vertical direction. When designing or using large size UHPC structures with high fiber content, special attention should be paid to the material anisotropy and the changes in structural mechanical properties due to the directivity of the fiber distribution.
  • loading
  • [1]
    DE LARRARD F, SEDRAN T. Optimization of ultra-high-performance concrete by the use of a packing model [J]. Cement and Concrete Research, 1994, 24(6): 997–1009. DOI: 10.1016/0008-8846(94)90022-1.
    [2]
    SOBUZ H R, VISINTIN P, MOHAMED ALI M S, et al. Manufacturing ultra-high performance concrete utilising conventional materials and production methods [J]. Construction and Building Materials, 2016, 111: 251–261. DOI: 10.1016/j.conbuildmat.2016.02.102.
    [3]
    YANG S L, MILLARD S G, SOUTSOS M N, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC) [J]. Construction and Building Materials, 2009, 23(6): 2291–2298. DOI: 10.1016/j.conbuildmat.2008.11.012.
    [4]
    CAMILETTI J, SOLIMAN A M, NEHDI M L. Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete [J]. Materials and Structures, 2013, 46(6): 881–898. DOI: 10.1617/s11527-012-9940-0.
    [5]
    WANG D H, SHI C J, WU Z M, et al. A review on ultra high performance concrete: part Ⅱ. hydration, microstructure and properties [J]. Construction and Building Materials, 2015, 96: 368–377. DOI: 10.1016/j.conbuildmat.2015.08.095.
    [6]
    SHI C J, WANG D H, WU L M, et al. The hydration and microstructure of ultra high-strength concrete with cement-silica fume-slag binder [J]. Cement and Concrete Composites, 2015, 61: 44–52. DOI: 10.1016/j.cemconcomp.2015.04.013.
    [7]
    WILLE K, NAAMAN A E, EL-TAWIL S, et al. Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing [J]. Materials and Structures, 2012, 45(3): 309–324. DOI: 10.1617/s11527-011-9767-0.
    [8]
    YAZICI H, YARDIMCI M Y, AYDIN S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes [J]. Construction and Building Materials, 2009, 23(3): 1223–1231. DOI: 10.1016/j.conbuildmat.2008.08.003.
    [9]
    ABBAS S, SOLIMAN A M, NEHDI M L. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages [J]. Construction and Building Materials, 2015, 75: 429–441. DOI: 10.1016/j.conbuildmat.2014.11.017.
    [10]
    KHOSRAVANI M R, WAGNER P, FRÖHLICH D, et al. Dynamic fracture investigations of ultra-high performance concrete by spalling tests [J]. Engineering Structures, 2019, 201: 109844. DOI: 10.1016/j.engstruct.2019.109844.
    [11]
    GUO Y B, GAO G F, JING L, et al. Quasi-static and dynamic splitting of high-strength concretes-tensile stress-strain response and effects of strain rate [J]. International Journal of Impact Engineering, 2019, 125: 188–211. DOI: 10.1016/j.ijimpeng.2018.11.012.
    [12]
    戎志丹, 孙伟. 粗集料对超高性能水泥基材料动态力学性能的影响 [J]. 爆炸与冲击, 2009, 29(4): 361–366. DOI: 10.11883/1001-1455(2009)04-0361-06.

    RONG Z D, SUN W. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites [J]. Explosion and Shock Waves, 2009, 29(4): 361–366. DOI: 10.11883/1001-1455(2009)04-0361-06.
    [13]
    张想柏, 杨秀敏, 陈肇元, 等. 接触爆炸钢筋混凝土板的震塌效应 [J]. 清华大学学报(自然科学版), 2006, 46(6): 765–768. DOI: 10.3321/j.issn:1000-0054.2006.06.004.

    ZHANG X B, YANG X M, CHEN Z Y, et al. Explosion spalling of reinforced concrete slabs with contact detonations [J]. Journal of Tsinghua University (Science and Technology), 2006, 46(6): 765–768. DOI: 10.3321/j.issn:1000-0054.2006.06.004.
    [14]
    王明洋, 张胜民, 国胜兵. 接触爆炸作用下钢板钢纤维混凝土遮弹层设计方法(Ⅰ) [J]. 爆炸与冲击, 2002, 22(1): 40–45.

    WANG M Y, ZHANG S M, GUO S B. Design method of steel and steel-fiber concrete shelter plate under contact detonation [J]. Explosion and Shock Waves, 2002, 22(1): 40–45.
    [15]
    胡金生, 杨秀敏, 周早生, 等. 接触爆炸对底部有土垫层纤维混凝土板破坏效应试验研究 [J]. 爆炸与冲击, 2005, 25(2): 157–162. DOI: 10.11883/1001-1455(2005)02-0157-06.

    HU J S, YANG X M, ZHOU Z S, et al. Experimental investigation on contact explosion damage effect to fiber reinforced concrete slab with soil bedding [J]. Explosion and Shock Waves, 2005, 25(2): 157–162. DOI: 10.11883/1001-1455(2005)02-0157-06.
    [16]
    岳松林, 王明洋, 张宁, 等. 混凝土板在接触爆炸作用下的震塌和贯穿临界厚度计算方法 [J]. 爆炸与冲击, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.

    YUE S L, WANG M Y, ZHANG N, et al. A method for calculating critical spalling and perforating thicknesses of concrete slabs subjected to contact explosion [J]. Explosion and Shock Waves, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.
    [17]
    LI J, WU C Q, HAO H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93: 62–75. DOI: 10.1016/j.ijimpeng.2016.02.007.
    [18]
    葛涛, 潘越峰, 谭可可, 等. 活性粉末混凝土抗冲击性能研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.

    GE T, PAN Y F, TAN K K, et al. Study on resistance of reactive powder concrete to impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.
    [19]
    戎志丹, 孙伟, 张云升, 等. 超高性能钢纤维混凝土抗二次接触爆炸性能研究 [J]. 华北水利水电大学学报, 2012, 33(6): 1–4. DOI: 10.19760/j.ncwu.zk.2012.06.001.

    RONG Z D, SUN W, ZHANG Y S, et al. Study on the characteristics of ultra-high performance steel fiber reinforced concrete under the second explosion [J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012, 33(6): 1–4. DOI: 10.19760/j.ncwu.zk.2012.06.001.
    [20]
    WU H, HU F, FANG Q, et al. A comparative study for the impact performance of shaped charge JET on UHPC targets [J]. Defence Technology, 2019, 15(4): 506–518. DOI: 10.1016/j.dt.2019.04.005.
    [21]
    王年桥. 防护结构计算原理与设计 [M]. 2版. 南京: 解放军理工大学工程兵工程学院, 2002.
    [22]
    张云升, 张文华, 刘建忠. 超高性能水泥基复合材料 [M]. 北京: 科学出版社, 2014.
    [23]
    郑全平, 牛小玲, 汪剑辉, 等. 不同钢纤维掺量C30 RC板爆炸震塌试验研究 [J]. 防护工程, 2013, 35(1): 16–20.

    ZHENG Q P, NIU X L, WANG J H, et al. Experimental investigation into explosion spalling of C30 RC plates with different steel fiber content [J]. Protective Engineering, 2013, 35(1): 16–20.
    [24]
    郑全平, 钱七虎, 周早生, 等. 钢筋混凝土震塌厚度计算公式对比研究 [J]. 工程力学, 2003, 20(3): 47–53. DOI: 10.3969/j.issn.1000-4750.2003.03.009.

    ZHENG Q P, QIAN Q H, ZHOU Z S, et al. Comparative analysis of scabbing thickness estimation of reinforced concrete structures [J]. Engineering Mechanics, 2003, 20(3): 47–53. DOI: 10.3969/j.issn.1000-4750.2003.03.009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (375) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return