Citation: | LI Jingye, JIANG Xinsheng, YU Binbin, WANG Chunhui, WANG Zituo. Visualization experimental research of oil gas vapor cloud deflagration in large-scale unconfined space[J]. Explosion And Shock Waves, 2022, 42(3): 035401. doi: 10.11883/bzycj-2021-0176 |
[1] |
LI D, ZHANG Q, MA Q J, et al. Influence of built-in obstacles on unconfined vapor cloud explosion [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 449–456. DOI: 10.1016/j.jlp.2016.07.007.
|
[2] |
郭丹彤, 吕淑然. 受限空间障碍物截面变化对混合气体爆炸特性参数的影响研究 [J]. 中国安全生产科学技术, 2016, 12(2): 83–87. DOI: 10.11731/j.issn.1673-193x.2016.02.015.
GUO D T, LYU S R. Research on influence to characteristic parameters of mixed gas explosion by section variation of obstacle in confined space [J]. Journal of Safety Science and Technology, 2016, 12(2): 83–87. DOI: 10.11731/j.issn.1673-193x.2016.02.015.
|
[3] |
杜扬, 王世茂, 齐圣, 等. 油气在顶部含弱约束结构受限空间内的爆炸特性 [J]. 爆炸与冲击, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.
DU Y, WANG S M, QI S, et al. Explosion of gasoline/air mixture in confined space with weakly constrained structure at the top [J]. Explosion and Shock Waves, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.
|
[4] |
CHEEDA V K, KUMAR A, RAMAMURTHI K. Influence of height of confined space on explosion and fire safety [J]. Fire Safety Journal, 2015, 76: 31–38. DOI: 10.1016/j.firesaf.2015.06.002.
|
[5] |
谢威, 蒋新生, 徐建楠, 等. 基于高斯多峰法的密闭空间爆炸特性曲线拟合 [J]. 振动与冲击, 2018, 37(24): 201–207. DOI: 10.13465/j.cnki.jvs.2018.24.030.
XIE W, JIANG X S, XU J N, et al. Fitting of characteristic curves of explosion in a confined space using a Gaussian multi-peak method [J]. Journal of Vibration and Shock, 2018, 37(24): 201–207. DOI: 10.13465/j.cnki.jvs.2018.24.030.
|
[6] |
WANG H, WANG L H, DENG J. Improvement and application of three-dimension numerical model for flammable gas explosions in confined space [J]. Journal of Computational and Theoretical Nanoscience, 2015, 12(12): 5179–5183. DOI: 10.1166/jctn.2015.4496.
|
[7] |
李祥春, 聂百胜, 杨春丽, 等. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响 [J]. 高压物理学报, 2017, 31(2): 135–147. DOI: 10.11858/gywlxb.2017.02.005.
LI X C, NIE B S, YANG C L, et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 135–147. DOI: 10.11858/gywlxb.2017.02.005.
|
[8] |
Center for Chemical Process Safety. Vapor cloud explosions-sample problems [M]// Center for Chemical Process Safety. Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs. New York, USA: American Institute of Chemical Engineers, 1994: 247−275. DOI: 10.1002/9780470938157.ch7.
|
[9] |
PANG L, ZHANG Q. Influence of vapor cloud shape on temperature field of unconfined vapor cloud explosion [J]. Chinese Journal of Chemical Engineering, 2010, 18(1): 164–169. DOI: 10.1016/S1004-9541(08)60338-9.
|
[10] |
李少鹏, 陈国华, 赵杰, 等. 开敞空间可燃气云爆炸冲击波超压及灾害动力响应研究评述 [J]. 中国安全生产科学技术, 2019, 15(11): 11–17. DOI: 10.11731/j.issn.1673-193x.2019.11.002.
LI S P, CHEN G H, ZHAO J, et al. Review of research on shock wave overpressure and disaster dynamic response of flammable vapor cloud explosion in unconfined space [J]. Journal of Safety Science and Technology, 2019, 15(11): 11–17. DOI: 10.11731/j.issn.1673-193x.2019.11.002.
|
[11] |
RAMÍREZ-MARENGO C, DIAZ-OVALLE C, VÁZQUEZ-ROMÁN R, et al. A stochastic approach for risk analysis in vapor cloud explosion [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 249–256. DOI: 10.1016/j.jlp.2014.09.006.
|
[12] |
ZHU Y, QIAN X M, LIU Z Y, et al. Analysis and assessment of the Qingdao crude oil vapor explosion accident: lessons learnt [J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 289–303. DOI: 10.1016/j.jlp.2015.01.004.
|
[13] |
ZHANG S H, ZHANG Q. Influence of geometrical shapes on unconfined vapor cloud explosion [J]. Journal of Loss Prevention in the Process Industries, 2018, 52: 29–39. DOI: 10.1016/j.jlp.2018.01.004.
|
[14] |
任新见, 张庆明, 薛一江. 不同点火方式下开敞空间半球形液化气气云爆炸效应试验研究 [J]. 兵工学报, 2014, 35(S2): 139–143.
REN X J, ZHANG Q M, XUE Y J. Experimental research on blasting effects of unconfined hemispherical liquid gas cloud by different ignition methods [J]. Acta Armamentarii, 2014, 35(S2): 139–143.
|
[15] |
NAGURA Y, KASAHARA J, MATSUO A. Multi-frame visualization for detonation wave diffraction [J]. Shock Waves, 2016, 26(5): 645–656. DOI: 10.1007/s00193-016-0663-y.
|
[16] |
庞磊, 张奇. 无约束气云爆炸热辐射伤害效应研究 [J]. 北京理工大学学报, 2010, 30(10): 1147–1150. DOI: 10.15918/j.tbit1001-0645.2010.10.008.
PANG L, ZHANG Q. Study into injury effect of thermal radiation from unconfined vapor cloud explosion [J]. Transactions of Beijing Institute of Technology, 2010, 30(10): 1147–1150. DOI: 10.15918/j.tbit1001-0645.2010.10.008.
|
[17] |
JAVIDI M, ABDOLHAMIDZADEH B, RENIERS G, et al. A multivariable model for estimation of vapor cloud explosion occurrence possibility based on a fuzzy logic approach for flammable materials [J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 140–150. DOI: 10.1016/j.jlp.2014.11.003.
|
[18] |
党福辉, 董呈杰, 孙旭红. 开敞空间可燃气云爆炸数值模拟研究 [J]. 天津理工大学学报, 2017, 33(6): 51–54. DOI: 10.3969/j.issn.1673-095X.2017.06.011.
DANG F H, DONG C J, SUN X H. Numerical simulation study on unconfined flammable vapor cloud explosion [J]. Journal of Tianjin University of Technology, 2017, 33(6): 51–54. DOI: 10.3969/j.issn.1673-095X.2017.06.011.
|
[19] |
杨国刚, 岳丹婷, 毕明树. 圆柱形可燃气云爆炸实验研究与数值模拟 [J]. 化工学报, 2008, 59(11): 2954–2959. DOI: 10.3321/j.issn:0438-1157.2008.11.041.
YANG G G, YUE D T, BI M S. Experimental and numerical study on cylindrical flammable gas cloud explosion [J]. Journal of Chemical Industry and Engineering (China), 2008, 59(11): 2954–2959. DOI: 10.3321/j.issn:0438-1157.2008.11.041.
|
[20] |
LI J D, HERNANDEZ F, HAO H, et al. Vented methane-air explosion overpressure calculation—A simplified approach based on CFD [J]. Process Safety and Environmental Protection, 2017, 109: 489–508. DOI: 10.1016/j.psep.2017.04.025.
|
[21] |
任少云. 开敞空间液化天然气泄漏低温扩散及爆炸传播规律 [J]. 爆炸与冲击, 2018, 38(4): 891–897. DOI: 10.11883/bzycj-2016-0323.
REN S Y. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space [J]. Explosion and Shock Waves, 2018, 38(4): 891–897. DOI: 10.11883/bzycj-2016-0323.
|
[22] |
LI J D, HAO H. Internal and external pressure prediction of vented gas explosion in large rooms by using analytical and CFD methods [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 367–381. DOI: 10.1016/j.jlp.2017.08.002.
|
[23] |
LIND C D, STREHLOW R A. Unconfined vapor cloud explosion study [M]. USA: United States Coast Guard, 1975: 327–331.
|
[24] |
丁信伟, 李志义, 李应博. 可燃气体云爆燃实验 [J]. 化工学报, 1999, 50(4): 558–562. DOI: 10.3321/j.issn:0438-1157.1999.04.020.
DING X W, LI Z Y, LI Y B. Experimental investigation into deflagrations of combustrial vapor clouds [J]. Journal of Chemical Industry and Engineering, 1999, 50(4): 558–562. DOI: 10.3321/j.issn:0438-1157.1999.04.020.
|
[25] |
罗正鸿, 詹晓力, 丁信伟, 等. 小气量开敞空间可燃气云爆燃实验 [J]. 浙江大学学报(工学版), 2002, 36(1): 105–108. DOI: 10.3785/j.issn.1008-973X.2002.01.025.
LUO Z H, ZHAN X L, DING X W, et al. Experimental investigation into deflagration of small-volume combustible vapour clouds [J]. Journal of Zhejiang University (Engineering Science), 2002, 36(1): 105–108. DOI: 10.3785/j.issn.1008-973X.2002.01.025.
|
[26] |
MERCX W P M, VAN DEN BERG A C. The explosion blast prediction model in the revised CPR 14E (yellow book) [J]. Process Safety Progress, 1997, 16(3): 152–159. DOI: 10.1002/prs.680160308.
|
[27] |
LV D, TAN W, LIU L Y, et al. Research on maximum explosion overpressure in LNG storage tank areas [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 162–170. DOI: 10.1016/j.jlp.2017.06.010.
|
[28] |
王世茂, 杜扬, 李国庆, 等. 含弱约束受限空间油气爆炸外部特性研究 [J]. 振动与冲击, 2017, 36(15): 253–258. DOI: 10.13465/j.cnki.jvs.2017.15.038.
WANG S M, DU Y, LI G Q, et al. Tests for external explosion characteristics of fuel-air mixture in a confined space with weak constraint surfaces [J]. Journal of Vibration and Shock, 2017, 36(15): 253–258. DOI: 10.13465/j.cnki.jvs.2017.15.038.
|
[29] |
TONG M M, WU G Q, HAO J F, et al. Explosion limits for combustible gases [J]. Mining Science and Technology (China), 2009, 19(2): 182–184. DOI: 10.1016/S1674-5264(09)60034-X.
|
[30] |
FAKANDU B M, MBAM C J, ANDREWS G E, et al. Gas explosion venting: external explosion turbulent flame speeds that control the overpressure [J]. Chemical Engineering Transactions, 2016, 53: 1–6. DOI: 10.3303/CET1653001.
|
[31] |
闫伟杰. 基于光谱分析和图像处理的火焰温度及辐射特性检测 [D]. 武汉: 华中科技大学, 2014: 44–57. DOI: 10.7666/d.D608951.
YAN W J. Measurement of flame temperature and radiative properties based on spectral analysis and image processing [D]. Wuhan: Huazhong University of Science and Technology, 2014: 44–57. DOI: 10.7666/d.D608951.
|
[1] | CHENG Fangming, GOU Ziyan, LUO Zhenmin, GE Tianjiao, GE Hanzhang. Effect of hydrogen ratio on inhibition property of wire mesh to propagation of the flame by methane premixed with hydrogen[J]. Explosion And Shock Waves, 2024, 44(4): 045402. doi: 10.11883/bzycj-2023-0295 |
[2] | GAO Jiancun, YANG Xigang, HU Shoutao, HONG Zijin, WANG Le, LI Ruxia, XIA Yimeng, SUN Xu. Effect of external magnetic field on explosion reaction of acetylene gas[J]. Explosion And Shock Waves, 2022, 42(7): 075401. doi: 10.11883/bzycj-2021-0417 |
[3] | ZHOU Yonghao, GAN Bo, JIANG Haipeng, HUANG Lei, GAO Wei. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion And Shock Waves, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064 |
[4] | LIU Chong, DU Yang, LIANG Jianjun, ZHANG Peili, MENG Hong. Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches[J]. Explosion And Shock Waves, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408 |
[5] | YU Jianliang, JI Wentao, YAN Xingqing, YU Xiaozhe, HOU Yujie. Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions[J]. Explosion And Shock Waves, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436 |
[6] | GAN Bo, GAO Wei, ZHANG Xinyan, JIANG Haipeng, BI Mingshu. Effect of methane concentration on minimum concentration and thickness of preheating zone in PMMA/methane hybrid explosion[J]. Explosion And Shock Waves, 2019, 39(2): 025404. doi: 10.11883/bzycj-2017-0252 |
[7] | GUO Qiang, WANG Mingyang, GAO Kanghua, ZHAO Tianhui, SUN Song. Experimental study and three-dimensional simulation of premixed combustible gas explosion venting in a rectangular cavity[J]. Explosion And Shock Waves, 2018, 38(5): 1099-1105. doi: 10.11883/bzycj-2017-0087 |
[8] | DU Yang, QI Sheng, LI Guoqing, WANG Shimao, LI Yangchao. A model of gaseous deflagration flame propagation outside the open end of a short duct[J]. Explosion And Shock Waves, 2018, 38(5): 1057-1063. doi: 10.11883/bzycj-2017-0060 |
[9] | SUN Song, WANG Mingyang, GAO Kanghua, ZHAO Tianhui, GUO Qiang. Experimental study on effect of large-scale explosion venting component on interior deglagration pressure[J]. Explosion And Shock Waves, 2018, 38(2): 359-366. doi: 10.11883/bzycj-2016-0211 |
[10] | SU Hang, JIANG Liqiao, CAO Hailiang, LIU Qinfei, LI Yanqin, WANG Xiaohan, ZHAO Daiqing. Characteristics of propane/air flame propagation and propane/hydrogen/air detonation in a micro chamber[J]. Explosion And Shock Waves, 2018, 38(2): 381-389. doi: 10.11883/bzycj-2016-0198 |
[11] | LI Guoqing, DU Yang, QI Sheng, WANG Shimao, LI Meng, LI Run. Large eddy simulation on the vented gasoline-air mixture explosions in a semi-confined pipe with continuous circular hollow obstacles[J]. Explosion And Shock Waves, 2018, 38(6): 1286-1394. doi: 10.11883/bzycj-2017-0215 |
[12] | DU Yang, WANG Shimao, YUAN Guangqiang, QI Sheng, WANG Bo, LI Guoqing, LI Yangchao. Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end[J]. Explosion And Shock Waves, 2018, 38(2): 465-472. doi: 10.11883/bzycj-2015-0242 |
[13] | ZHANG Hongming, CHEN Xianfeng, ZHANG Ying, NIU Yi, DAI Huaming, HUANG Chuyuan. Flame propagation velocities of cornstarch dust explosion based on RGB color model[J]. Explosion And Shock Waves, 2018, 38(1): 133-139. doi: 10.11883/bzycj-2016-0278 |
[14] | Liu Yuanyi, Li Wenguang, Tan Houzhang, Zhang Lan, Wang Xuebin. Experimental study on deflagration parameters of dust-CO/H2 hybrid mixture[J]. Explosion And Shock Waves, 2017, 37(2): 215-220. doi: 10.11883/1001-1455(2016)05-0215-06 |
[15] | Qi Sheng, Du Yang, Liang Jianjun, Zhang Peili. Flame patterns of gasoline-air mixture deflagration in a confined space[J]. Explosion And Shock Waves, 2016, 36(6): 832-838. doi: 10.11883/1001-1455(2016)06-0832-07 |
[16] | Gao Wei, Abe Shuntaro, Rong Jian-zhong, Dobashi Ritsu. Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube[J]. Explosion And Shock Waves, 2015, 35(3): 372-379. doi: 10.11883/1001-1455-(2015)03-0372-08 |
[17] | Li Hai-tao, Luo Wei, Jiang Yu-sheng, Zhang Jun-song. Initiation and extension of gas-driven fracture during compound perforation[J]. Explosion And Shock Waves, 2014, 34(3): 307-314. doi: 10.11883/1001-1455(2014)03-0307-08 |
[18] | ZHANG Liang, WEI Xiao-Lin, YU Li-Xin, ZHANG Yu, LI Teng, LI Bo. Deflagration characteristics of a preheated CO-air mixture in a duct[J]. Explosion And Shock Waves, 2010, 30(2): 191-196. doi: 10.11883/1001-1455(2010)02-0191-06 |
1. | 顾琳琳,徐永行,朱黄浩,王振. 隧道内甲烷蒸气云爆炸特性及杀伤效应研究. 含能材料. 2025(03): 213-224 . ![]() |