Volume 42 Issue 3
Apr.  2022
Turn off MathJax
Article Contents
LI Jingye, JIANG Xinsheng, YU Binbin, WANG Chunhui, WANG Zituo. Visualization experimental research of oil gas vapor cloud deflagration in large-scale unconfined space[J]. Explosion And Shock Waves, 2022, 42(3): 035401. doi: 10.11883/bzycj-2021-0176
Citation: LI Jingye, JIANG Xinsheng, YU Binbin, WANG Chunhui, WANG Zituo. Visualization experimental research of oil gas vapor cloud deflagration in large-scale unconfined space[J]. Explosion And Shock Waves, 2022, 42(3): 035401. doi: 10.11883/bzycj-2021-0176

Visualization experimental research of oil gas vapor cloud deflagration in large-scale unconfined space

doi: 10.11883/bzycj-2021-0176
  • Received Date: 2021-05-08
  • Rev Recd Date: 2021-06-21
  • Available Online: 2022-02-19
  • Publish Date: 2022-04-07
  • An oil-gas deflagration simulation experimental condition system in the large-scale unconfined space was independently designed and built against the theoretical requirements for safety monitoring and controlling of oil-gas mixture explosions in large-scale unconfined spaces. To begin with, pressure and flame signals, variations in global temperature and radiation indicators in various areas of the system were accurately collected through sensors, thermal imagers and radiometers. Also, high-speed cameras were adopted to capture the dynamic development of flames during deflagration, acquiring specific behavior characteristics of flame shape. The results show that the oil-gas combustion modes in the unconfined space can be divided into fireless gas cloud firing, oil-gas combustion with open flame, and oil-gas deflagration with compression wave, according to the differences in initial oil-gas concentration. To be specific, the flame generated from oil-gas deflagration is in the mirror-image shape of “L”, which can be found in the infield of the bench as well as behind and right above the ignition surface. Moreover, several peaks can be found in the dynamic overpressure sequence development curve. Based on the peak type, the whole deflagration process can be partitioned into stable spread, flame bleeding, and burning collapse. Specifically, the high-intensity area of deflagration flame could be primarily observed at the 1/3 to 2/3 of the bench, with the peak reaching up to 4816.03 mV. It can be observed that the flame is principally presented in blue and orange, and the flame speed is downward in fluctuation along with the deflagration process. It can also be coupled with the overpressure development stage. After that, the overpressure peak is presented in a trend of first decreasing and then increasing along with the increase in the initial oil-gas concentration, whereas time consumed in peak forming is displayed in an opposite law. Note that both can fitted using the cubic polynomial. Besides, temperature gradient of deflagration flames is associated with the flame heading, and the temperature gradient of the flame front surface is typically smaller than that of the tail flame. What’s more, the formation time of radiation peak of deflagration has a certain delay in comparison to the flame intensity, causing that high-intensity radiation can be easily formed at the end of deflagration spreading. To sum up, key parameter supports and theoretical bases are provided for the online monitoring and explosion suppression of oil gas cloud deflagration in the large-scale unconfined space, presenting a significance in guiding the research and development of explosion suppression equipment.
  • loading
  • [1]
    LI D, ZHANG Q, MA Q J, et al. Influence of built-in obstacles on unconfined vapor cloud explosion [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 449–456. DOI: 10.1016/j.jlp.2016.07.007.
    [2]
    郭丹彤, 吕淑然. 受限空间障碍物截面变化对混合气体爆炸特性参数的影响研究 [J]. 中国安全生产科学技术, 2016, 12(2): 83–87. DOI: 10.11731/j.issn.1673-193x.2016.02.015.

    GUO D T, LYU S R. Research on influence to characteristic parameters of mixed gas explosion by section variation of obstacle in confined space [J]. Journal of Safety Science and Technology, 2016, 12(2): 83–87. DOI: 10.11731/j.issn.1673-193x.2016.02.015.
    [3]
    杜扬, 王世茂, 齐圣, 等. 油气在顶部含弱约束结构受限空间内的爆炸特性 [J]. 爆炸与冲击, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.

    DU Y, WANG S M, QI S, et al. Explosion of gasoline/air mixture in confined space with weakly constrained structure at the top [J]. Explosion and Shock Waves, 2017, 37(1): 53–60. DOI: 10.11883/1001-1455(2017)01-0053-08.
    [4]
    CHEEDA V K, KUMAR A, RAMAMURTHI K. Influence of height of confined space on explosion and fire safety [J]. Fire Safety Journal, 2015, 76: 31–38. DOI: 10.1016/j.firesaf.2015.06.002.
    [5]
    谢威, 蒋新生, 徐建楠, 等. 基于高斯多峰法的密闭空间爆炸特性曲线拟合 [J]. 振动与冲击, 2018, 37(24): 201–207. DOI: 10.13465/j.cnki.jvs.2018.24.030.

    XIE W, JIANG X S, XU J N, et al. Fitting of characteristic curves of explosion in a confined space using a Gaussian multi-peak method [J]. Journal of Vibration and Shock, 2018, 37(24): 201–207. DOI: 10.13465/j.cnki.jvs.2018.24.030.
    [6]
    WANG H, WANG L H, DENG J. Improvement and application of three-dimension numerical model for flammable gas explosions in confined space [J]. Journal of Computational and Theoretical Nanoscience, 2015, 12(12): 5179–5183. DOI: 10.1166/jctn.2015.4496.
    [7]
    李祥春, 聂百胜, 杨春丽, 等. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响 [J]. 高压物理学报, 2017, 31(2): 135–147. DOI: 10.11858/gywlxb.2017.02.005.

    LI X C, NIE B S, YANG C L, et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 135–147. DOI: 10.11858/gywlxb.2017.02.005.
    [8]
    Center for Chemical Process Safety. Vapor cloud explosions-sample problems [M]// Center for Chemical Process Safety. Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs. New York, USA: American Institute of Chemical Engineers, 1994: 247−275. DOI: 10.1002/9780470938157.ch7.
    [9]
    PANG L, ZHANG Q. Influence of vapor cloud shape on temperature field of unconfined vapor cloud explosion [J]. Chinese Journal of Chemical Engineering, 2010, 18(1): 164–169. DOI: 10.1016/S1004-9541(08)60338-9.
    [10]
    李少鹏, 陈国华, 赵杰, 等. 开敞空间可燃气云爆炸冲击波超压及灾害动力响应研究评述 [J]. 中国安全生产科学技术, 2019, 15(11): 11–17. DOI: 10.11731/j.issn.1673-193x.2019.11.002.

    LI S P, CHEN G H, ZHAO J, et al. Review of research on shock wave overpressure and disaster dynamic response of flammable vapor cloud explosion in unconfined space [J]. Journal of Safety Science and Technology, 2019, 15(11): 11–17. DOI: 10.11731/j.issn.1673-193x.2019.11.002.
    [11]
    RAMÍREZ-MARENGO C, DIAZ-OVALLE C, VÁZQUEZ-ROMÁN R, et al. A stochastic approach for risk analysis in vapor cloud explosion [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 249–256. DOI: 10.1016/j.jlp.2014.09.006.
    [12]
    ZHU Y, QIAN X M, LIU Z Y, et al. Analysis and assessment of the Qingdao crude oil vapor explosion accident: lessons learnt [J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 289–303. DOI: 10.1016/j.jlp.2015.01.004.
    [13]
    ZHANG S H, ZHANG Q. Influence of geometrical shapes on unconfined vapor cloud explosion [J]. Journal of Loss Prevention in the Process Industries, 2018, 52: 29–39. DOI: 10.1016/j.jlp.2018.01.004.
    [14]
    任新见, 张庆明, 薛一江. 不同点火方式下开敞空间半球形液化气气云爆炸效应试验研究 [J]. 兵工学报, 2014, 35(S2): 139–143.

    REN X J, ZHANG Q M, XUE Y J. Experimental research on blasting effects of unconfined hemispherical liquid gas cloud by different ignition methods [J]. Acta Armamentarii, 2014, 35(S2): 139–143.
    [15]
    NAGURA Y, KASAHARA J, MATSUO A. Multi-frame visualization for detonation wave diffraction [J]. Shock Waves, 2016, 26(5): 645–656. DOI: 10.1007/s00193-016-0663-y.
    [16]
    庞磊, 张奇. 无约束气云爆炸热辐射伤害效应研究 [J]. 北京理工大学学报, 2010, 30(10): 1147–1150. DOI: 10.15918/j.tbit1001-0645.2010.10.008.

    PANG L, ZHANG Q. Study into injury effect of thermal radiation from unconfined vapor cloud explosion [J]. Transactions of Beijing Institute of Technology, 2010, 30(10): 1147–1150. DOI: 10.15918/j.tbit1001-0645.2010.10.008.
    [17]
    JAVIDI M, ABDOLHAMIDZADEH B, RENIERS G, et al. A multivariable model for estimation of vapor cloud explosion occurrence possibility based on a fuzzy logic approach for flammable materials [J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 140–150. DOI: 10.1016/j.jlp.2014.11.003.
    [18]
    党福辉, 董呈杰, 孙旭红. 开敞空间可燃气云爆炸数值模拟研究 [J]. 天津理工大学学报, 2017, 33(6): 51–54. DOI: 10.3969/j.issn.1673-095X.2017.06.011.

    DANG F H, DONG C J, SUN X H. Numerical simulation study on unconfined flammable vapor cloud explosion [J]. Journal of Tianjin University of Technology, 2017, 33(6): 51–54. DOI: 10.3969/j.issn.1673-095X.2017.06.011.
    [19]
    杨国刚, 岳丹婷, 毕明树. 圆柱形可燃气云爆炸实验研究与数值模拟 [J]. 化工学报, 2008, 59(11): 2954–2959. DOI: 10.3321/j.issn:0438-1157.2008.11.041.

    YANG G G, YUE D T, BI M S. Experimental and numerical study on cylindrical flammable gas cloud explosion [J]. Journal of Chemical Industry and Engineering (China), 2008, 59(11): 2954–2959. DOI: 10.3321/j.issn:0438-1157.2008.11.041.
    [20]
    LI J D, HERNANDEZ F, HAO H, et al. Vented methane-air explosion overpressure calculation—A simplified approach based on CFD [J]. Process Safety and Environmental Protection, 2017, 109: 489–508. DOI: 10.1016/j.psep.2017.04.025.
    [21]
    任少云. 开敞空间液化天然气泄漏低温扩散及爆炸传播规律 [J]. 爆炸与冲击, 2018, 38(4): 891–897. DOI: 10.11883/bzycj-2016-0323.

    REN S Y. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space [J]. Explosion and Shock Waves, 2018, 38(4): 891–897. DOI: 10.11883/bzycj-2016-0323.
    [22]
    LI J D, HAO H. Internal and external pressure prediction of vented gas explosion in large rooms by using analytical and CFD methods [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 367–381. DOI: 10.1016/j.jlp.2017.08.002.
    [23]
    LIND C D, STREHLOW R A. Unconfined vapor cloud explosion study [M]. USA: United States Coast Guard, 1975: 327–331.
    [24]
    丁信伟, 李志义, 李应博. 可燃气体云爆燃实验 [J]. 化工学报, 1999, 50(4): 558–562. DOI: 10.3321/j.issn:0438-1157.1999.04.020.

    DING X W, LI Z Y, LI Y B. Experimental investigation into deflagrations of combustrial vapor clouds [J]. Journal of Chemical Industry and Engineering, 1999, 50(4): 558–562. DOI: 10.3321/j.issn:0438-1157.1999.04.020.
    [25]
    罗正鸿, 詹晓力, 丁信伟, 等. 小气量开敞空间可燃气云爆燃实验 [J]. 浙江大学学报(工学版), 2002, 36(1): 105–108. DOI: 10.3785/j.issn.1008-973X.2002.01.025.

    LUO Z H, ZHAN X L, DING X W, et al. Experimental investigation into deflagration of small-volume combustible vapour clouds [J]. Journal of Zhejiang University (Engineering Science), 2002, 36(1): 105–108. DOI: 10.3785/j.issn.1008-973X.2002.01.025.
    [26]
    MERCX W P M, VAN DEN BERG A C. The explosion blast prediction model in the revised CPR 14E (yellow book) [J]. Process Safety Progress, 1997, 16(3): 152–159. DOI: 10.1002/prs.680160308.
    [27]
    LV D, TAN W, LIU L Y, et al. Research on maximum explosion overpressure in LNG storage tank areas [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 162–170. DOI: 10.1016/j.jlp.2017.06.010.
    [28]
    王世茂, 杜扬, 李国庆, 等. 含弱约束受限空间油气爆炸外部特性研究 [J]. 振动与冲击, 2017, 36(15): 253–258. DOI: 10.13465/j.cnki.jvs.2017.15.038.

    WANG S M, DU Y, LI G Q, et al. Tests for external explosion characteristics of fuel-air mixture in a confined space with weak constraint surfaces [J]. Journal of Vibration and Shock, 2017, 36(15): 253–258. DOI: 10.13465/j.cnki.jvs.2017.15.038.
    [29]
    TONG M M, WU G Q, HAO J F, et al. Explosion limits for combustible gases [J]. Mining Science and Technology (China), 2009, 19(2): 182–184. DOI: 10.1016/S1674-5264(09)60034-X.
    [30]
    FAKANDU B M, MBAM C J, ANDREWS G E, et al. Gas explosion venting: external explosion turbulent flame speeds that control the overpressure [J]. Chemical Engineering Transactions, 2016, 53: 1–6. DOI: 10.3303/CET1653001.
    [31]
    闫伟杰. 基于光谱分析和图像处理的火焰温度及辐射特性检测 [D]. 武汉: 华中科技大学, 2014: 44–57. DOI: 10.7666/d.D608951.

    YAN W J. Measurement of flame temperature and radiative properties based on spectral analysis and image processing [D]. Wuhan: Huazhong University of Science and Technology, 2014: 44–57. DOI: 10.7666/d.D608951.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(5)

    Article Metrics

    Article views (370) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return