Volume 42 Issue 5
May  2022
Turn off MathJax
Article Contents
WEN Yanbo, HU Liangliang, QIN Jian, ZHANG Yanze, WANG Jinxiang, LIU Liangtao, HUANG Ruiyuan. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion[J]. Explosion And Shock Waves, 2022, 42(5): 053203. doi: 10.11883/bzycj-2021-0206
Citation: WEN Yanbo, HU Liangliang, QIN Jian, ZHANG Yanze, WANG Jinxiang, LIU Liangtao, HUANG Ruiyuan. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion[J]. Explosion And Shock Waves, 2022, 42(5): 053203. doi: 10.11883/bzycj-2021-0206

Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion

doi: 10.11883/bzycj-2021-0206
  • Received Date: 2021-05-25
  • Rev Recd Date: 2021-08-23
  • Available Online: 2022-05-06
  • Publish Date: 2022-05-27
  • In marine warfare, the water jets formed by near-field underwater explosions can cause serious local damage to ship structures. With more knowledge on near-field underwater explosions, the phenomenon of water jet has become a hot research topic in recent years. To study the formation mechanism of water jet during near-field explosion under the bottom of a ship, an underwater explosion experiment was carried out, in which 2.5 g of TNT was detonated under the bottom of a clamped square plate at different explosion distances. A high-speed camera was used to record the evolution of the bubble jet. At the same time, a free-field underwater pressure sensor was used to measure the pressure field in the water tank. The experimental results show that with the increase of the burst distance, the process of bubbles evolving to form jets at the bottom of the square plate can be divided into two types; that is, the adsorption type and non-adsorption type. Then, by employing ABAQUS software andusing the CEL method, a series of numerical simulations were carried out for the experiment. The numerical simulation results show that the critical point for the conversion from the adsorption jet to the non-adsorption jet is between 0.821 times the maximum bubble radius and 0.867 times the maximum bubble radius. Because the upper part of the bubble is difficult to expand freely under the barrier of the steel plate, the corresponding burst distance when the bubble is adsorbed is smaller than the maximum bubble radius. By analyzing the velocity cloud diagram at the jet being formed, it is found that with the increase of the burst distance, because the clamped square plate accelerates the process of bubble collapse, the time of jet formation is advanced. The maximum velocity during the formation process of water jet and the velocity when water jet hits the steel plate both increase first and then decrease with the increase of the burst distance, reaching the maximum near the critical point. The maximum jet velocity can reach 621 m/s, the maximum jet velocity when jet hits the steel plate can reach 269 m/s. Because the larger the burst distance, the later the bubble collapses, and the more concentrated the energy in the bubble, which makes the jet velocity larger, but when the burst distance is too large, the Bjerknes effect of the steel plate on the bubble will be weakened, which will reduce the jet velocity. Consequently, a critical point of the burst distance exists, at which the jet velocity renders a maximum.
  • loading
  • [1]
    金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.

    JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
    [2]
    罗海波, 许凌云, 惠斌, 等. 基于深度学习的目标跟踪方法研究现状与展望 [J]. 红外与激光工程, 2017, 46(5): 0502002. DOI: 10.3788/IRLA201746.0502002.

    LUO H B, XU L Y, HUI B. Status and prospect of target tracking based on deep learning [J]. Infrared and Laser Engineering, 2017, 46(5): 0502002. DOI: 10.3788/IRLA201746.0502002.
    [3]
    ZHANG Z H, WANG Y X, ZHAO H F, et al. An experimental study on the dynamic response of a hull girder subjected to near field underwater explosion [J]. Marine Structures, 2015, 44: 43–60. DOI: 10.1016/j.marstruc.2015.07.002.
    [4]
    ZONG Z, ZHAO Y J, LI H T. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock [J]. Marine Structures, 2013, 31: 24–43. DOI: 10.1016/j.marstruc.2013.01.004.
    [5]
    RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion [J]. International Journal of Impact Engineering, 2001, 25(4): 373–386. DOI: 10.1016/S0734-743X(00)00051-8.
    [6]
    张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究 [J]. 物理学报, 2008, 57(1): 339–353. DOI: 10.3321/j.issn:1000-3290.2008.01.054.

    ZHANG A M, YAO X L. The law of the underwater explosion bubble motion near free surface [J]. Acta Physica Sinica, 2008, 57(1): 339–353. DOI: 10.3321/j.issn:1000-3290.2008.01.054.
    [7]
    刘建湖. 舰船非接触水下爆炸动力学的理论与应用 [D]. 江苏无锡: 中国船舶科学研究中心, 2002: 2–4.

    LIU J H. Theory and its applications of ship dynamic responses to non-contact underwater explosions [D]. Wuxi, Jiangsu, China: China Ship Scientific Research Center, 2002: 2–4.
    [8]
    陈莹玉. 水下近场爆炸时不同结构形式的壁压与毁伤特性试验研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019: 1–3.

    CHEN Y Y. Experimental study on wall pressure and damage of different structures to near-field underwater explosion [D]. Harbin, Heilongjian, China: Harbin Engineering University, 2019: 1–3.
    [9]
    WANG H, CHENG Y S, LIU J, et al. Damage evaluation of a simplified hull girder subjected to underwater explosion load: a semi-analytical model [J]. Marine Structures, 2016, 45: 43–62. DOI: 10.1016/j.marstruc.2015.10.005.
    [10]
    COLE R H. Underwater explosion [M]. New Jersey, USA: Princeton University Press, 1948: 118–127.
    [11]
    孙远翔, 田俊宏. 近场水下爆炸载荷及舰船结构动态响应研究综述 [J]. 舰船科学技术, 2019, 41(6): 1–8. DOI: 10.3404/j.issn.1672-7649.2019.06.001.

    SUN Y X, TIAN J H. Review of near-field underwater explosion load and ship structure dynamic response [J]. Ship Science and Technology, 2019, 41(6): 1–8. DOI: 10.3404/j.issn.1672-7649.2019.06.001.
    [12]
    ZHANG A M, WANG S P, HUANG C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics [J]. European Journal of Mechanics B: Fluids, 2013, 42: 69–91. DOI: 10.1016/j.euromechflu.2013.06.008.
    [13]
    郑监, 张舵, 蒋邦海, 等. 气泡与自由液面相互作用形成水射流的机理研究 [J]. 物理学报, 2017, 66(4): 044702. DOI: 10.7498/aps.66.044702.

    ZHENG J, ZHANG D, JIANG B H, et al. Formation mechanism of water jets induced by the interaction between bubble and free surface [J]. Acta Physica Sinica, 2017, 66(4): 044702. DOI: 10.7498/aps.66.044702.
    [14]
    SHIMA A, TOMITA Y, GIBSON D C, et al. The growth and collapse of cavitation bubbles near composite surfaces [J]. Journal of Fluid Mechanics, 1989, 203: 199–214. DOI: 10.1017/S0022112089001436.
    [15]
    TOMITA Y, SHIMA A, TAKAHASHI K. The collapse of a gas bubble attached to a solid wall by a shock wave and the induced impact pressure [J]. Journal of Fluids Engineering, 1983, 105(3): 341–347. DOI: 10.1115/1.3241001.
    [16]
    张阿漫, 王超, 王诗平, 等. 气泡与自由液面相互作用的实验研究 [J]. 物理学报, 2012, 61(8): 084701. DOI: 10.7498/aps.61.084701.

    ZHANG A M, WANG C, WANG S P, et al. Experimental study of interaction between bubble and free surface [J]. Acta Physica Sinica, 2012, 61(8): 084701. DOI: 10.7498/aps.61.084701.
    [17]
    宗思光, 王江安, 刘涛, 等. 激光聚焦击穿液体的爆炸气泡特性 [J]. 爆炸与冲击, 2011, 31(6): 641–646. DOI: 10.11883/1001-1455(2011)06-0641-06.

    ZONG S G, WANG J A, LIU T, et al. Characteristics of explosion bubbles generated by laser-induced breakdown in liquids [J]. Explosion and Shock Waves, 2011, 31(6): 641–646. DOI: 10.11883/1001-1455(2011)06-0641-06.
    [18]
    VOGEL A, LAUTERBORN W, TIMM R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary [J]. Journal of Fluid Mechanics, 1989, 206: 299–338. DOI: 10.1017/S0022112089002314.
    [19]
    GREGORČIČ P, PETKOVŠEK R, MOŽZINA J. Investigation of a cavitation bubble between a rigid boundary and a free surface [J]. Journal of Applied Physics, 2007, 102(9): 094904. DOI: 10.1063/1.2805645.
    [20]
    KLASEBOER E, HUNG K C, WANG C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537: 387–413. DOI: 10.1017/S0022112005005306.
    [21]
    牟金磊, 朱锡, 黄晓明, 等. 水下爆炸气泡射流现象的试验研究 [J]. 哈尔滨工程大学学报, 2010, 31(2): 154–158. DOI: 10.3969/j.issn.1006-7043.2010.02.004.

    MU J L, ZHU X, HUANG X M, et al. Experimental study of jets formed by bubbles from underwater explosions [J]. Journal of Harbin Engineering University, 2010, 31(2): 154–158. DOI: 10.3969/j.issn.1006-7043.2010.02.004.
    [22]
    GAN N, LIU L T, YAO X L, et al. Experimental and numerical investigation on the dynamic response of a simplified open floating slender structure subjected to underwater explosion bubble [J]. Ocean Engineering, 2021, 219: 108308. DOI: 10.1016/j.oceaneng.2020.108308.
    [23]
    CUI P, ZHANG A M, WANG S P. Small-charge underwater explosion bubble experiments under various boundary conditions [J]. Physics of Fluids, 2016, 28(11): 117103. DOI: 10.1063/1.4967700.
    [24]
    汪斌, 谭多望. 水中爆炸形成水射流现象的实验研究 [J]. 哈尔滨工程大学学报, 2010, 31(1): 42–46. DOI: 10.3969/j.issn.1006-7043.2010.01.007.

    WANG B, TAN D W. Water jet phenomena caused by underwater explosions [J]. Journal of Harbin Engineering University, 2010, 31(1): 42–46. DOI: 10.3969/j.issn.1006-7043.2010.01.007.
    [25]
    胡毅亭, 贾宪振, 饶国宁, 等. 水下爆炸冲击波和气泡脉动的数值模拟研究 [J]. 舰船科学技术, 2009, 31(2): 134–140. DOI: 10.3404/j.issn.1672-7649.2009.02.027.

    HU Y T, JIA X Z, RAO G N, et al. Numerical study of underwater explosion shock wave and bubble pulse [J]. Ship Science and Technology, 2009, 31(2): 134–140. DOI: 10.3404/j.issn.1672-7649.2009.02.027.
    [26]
    ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD-757183 [R]. 1972: 86-120.
    [27]
    王高辉, 张社荣, 卢文波. 近边界面的水下爆炸冲击波传播特性及气穴效应 [J]. 水利学报, 2015, 46(8): 999–1007. DOI: 10.13243/j.cnki.slxb.20140035.

    WANG G H, ZHANG S R, LU W B. The influence of boundaries on the shock wave propagation characteristics and cavitation effects of underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(8): 999–1007. DOI: 10.13243/j.cnki.slxb.20140035.
    [28]
    ABOSHIO A, YE J Q. Numerical study of the dynamic response of inflatable offshore fender barrier structures using the coupled Eulerian-Lagrangian discretization technique [J]. Ocean Engineering, 2016, 112: 265–276. DOI: 10.1016/j.oceaneng.2015.12.020.
    [29]
    MOUKALLED F, MANGANI L, DARWISH M. The finite volume method in computational fluid dynamics [M]. Cham, Switzerland: Springer International Publishing, 2016.
    [30]
    胡亮亮, 黄瑞源, 李世超, 等. 水下爆炸冲击波数值仿真研究 [J]. 高压物理学报, 2020, 34(1): 015102. DOI: 10.11858/gywlxb.201907733.

    HU L L, HUANG R Y, LI S C, et al. Shock wave simulation of underwater explosion [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. DOI: 10.11858/gywlxb.201907733.
    [31]
    林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定 [J]. 振动与冲击, 2014, 33(9): 153–158,172. DOI: 10.13465/j.cnki.jvs.2014.09.028.

    LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158,172. DOI: 10.13465/j.cnki.jvs.2014.09.028.
    [32]
    张阿漫, 姚熊亮. 基于边界积分法的气泡动态特性综述 [J]. 力学进展, 2008, 38(5): 561–570. DOI: 10.3321/j.issn:1000-0992.2008.05.003.

    ZHANG A M, YAO X L. Review on the bubble dynamics based on boundary integral method [J]. Advances in Mechanics, 2008, 38(5): 561–570. DOI: 10.3321/j.issn:1000-0992.2008.05.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(3)

    Article Metrics

    Article views (445) PDF downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return