Citation: | ZHANG Pinliang, CAO Yan, CHEN Chuan, SONG Guangming, WU Qiang, LI Yu, GONG Zizheng, LI Ming. Ballistic limit of an impedance-graded-material enhanced Whipple shield[J]. Explosion And Shock Waves, 2022, 42(2): 023301. doi: 10.11883/bzycj-2021-0230 |
[1] |
WHIPPLE F L. Meteorites and space travel [J]. Astronomical Journal, 1947, 52(5): 131. DOI: 10.1086/106009.
|
[2] |
SCHMIDT R M, HOUSEN K R, BJORKMAN M D, et al. Advanced all-metal orbital debris shield performance at 7 to 17 km/s [J]. International Journal of Impact Engineering, 1995, 17(4): 719–730. DOI: 10.1016/0734-743X(95)99894-W.
|
[3] |
郭运佳, 文雪忠, 黄洁, 等. 不同填充层材料的空间碎片防护结构性能试验研究 [J]. 航天器环境工程, 2020, 37(6): 589–595. DOI: 10.12126/see.2020.06.009.
GUO Y J, WEN X Z, HUANG J, et al. Experimental study of shielding performance of protecting structures stuffed with different materials [J]. Spacecraft Environment Engineering, 2020, 37(6): 589–595. DOI: 10.12126/see.2020.06.009.
|
[4] |
黄鑫, 凌中, 刘宗德, 等. 梯度复合Whipple防护结构的超高速撞击实验 [J]. 爆炸与冲击, 2013, 33(S1): 92–98.
HUANG X, LING Z, LIU Z D, et al. Hypervelocity impact experiments on new gradient Whipple shield structure [J]. Explosion and Shock Waves, 2013, 33(S1): 92–98.
|
[5] |
HOFMANN D C, HAMILL L, CHRISTIANSEN E, et al. Hypervelocity impact testing of a metallic glass-stuffed Whipple shield [J]. Advanced Engineering Materials, 2015, 17(9): 1313–1322. DOI: 10.1002/adem.201400518.
|
[6] |
PUTZAR R, ZHENG S G, AN J, et al. A stuffed Whipple shield for the Chinese space station [J]. International Journal of Impact Engineering, 2019, 132: 103304. DOI: 10.1016/j.ijimpeng.2019.05.018.
|
[7] |
CHRISTIANSEN E L. Meteoroid/debris shielding [R]. Houston, USA: NASA, 2003.
|
[8] |
CHRISTIANSEN E L, NAGY K, LEAR D M, et al. Space station MMOD shielding [J]. Acta Astronautica, 2009, 65(7/8): 921–929. DOI: 10.1016/j.actaastro.2008.01.046.
|
[9] |
ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI: 10.1016/j.ijimpeng.2018.12.007.
|
[10] |
张品亮, 宋光明, 龚自正, 等. Al/Mg波阻抗梯度材料加强型Whipple结构超高速撞击特性研究 [J]. 爆炸与冲击, 2019, 39(12): 125101. DOI: 10.11883/bzycj-2018-0461.
ZHANG P L, SONG G M, GONG Z Z, et al. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials [J]. Explosion and Shock Waves, 2019, 39(12): 125101. DOI: 10.11883/bzycj-2018-0461.
|
[11] |
HUANG X, LING Z, LIU Z D, et al. Amorphous alloy reinforced Whipple shield structure [J]. International Journal of Impact Engineering, 2012, 42: 1–10. DOI: 10.1016/j.ijimpeng.2011.11.001.
|
[12] |
ZHANG P L, XU K B, LI M, et al. Study of the shielding performance of a Whipple shield enhanced by Ti-Al-nylon impedance-graded materials [J]. International Journal of Impact Engineering, 2019, 124: 23–30. DOI: 10.1016/j.ijimpeng.2018.08.005.
|
[13] |
宋光明, 李明, 武强, 等. 超高速撞击下波阻抗梯度防护结构碎片云特性研究 [J]. 爆炸与冲击, 2021, 41(2): 021405. DOI: 10.11883/bzycj-2020-0299.
SONG G M, LI M, WU Q, et al. Debris cloud characteristics of graded-impedance shields under hypervelocity impact [J]. Explosion and Shock Waves, 2021, 41(2): 021405. DOI: 10.11883/bzycj-2020-0299.
|
[14] |
LONG L P, PENG Y B, ZHOU W, et al. Study on hypervelocity impact characteristics of Ti/Al/Mg density-graded materials [J]. Metals, 2020, 10(5): 697. DOI: 10.3390/met10050697.
|
[15] |
LONG L P, LIU W S, MA Y Z, et al. Microstructure and diffusion behaviors of the diffusion bonded Mg/Al joint [J]. High Temperature Materials and Processes, 2017, 36(9): 897–903. DOI: 10.1515/htmp-2016-0023.
|
[16] |
PIEKUTOWSKI A J, POORMON K L. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s [J]. International Journal of Impact Engineering, 2008, 35(12): 1716–1722. DOI: 10.1016/j.ijimpeng.2008.07.023.
|
[17] |
GRADY D E, KIPP M E. Experimental measurement of dynamic failure and fragmentation properties of metals [J]. International Journal of Solids and Structures, 1995, 32(17): 2779–2791. DOI: 10.1016/0020-7683(94)00297-A.
|
[18] |
MEYERS M A. 材料的动力学行为 [M]. 张庆明, 刘彦, 黄风雷, 等, 译. 北京: 国防工业出版社, 2006: 83.
|
[19] |
谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007.
|
[20] |
经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999.
|
[21] |
MARSH S P. LASL shock hugoniot data [M]. California, USA: University of California, 1980.
|
[22] |
ANDERSON C E Jr, TRUCANO T G, MULLIN S A. Debris cloud dynamics [J]. International Journal of Impact Engineering, 1990, 9(1): 89–113. DOI: 10.1016/0734-743X(90)90024-P.
|
[23] |
MCQUEEN R G, MARSH S P. Equation of state for nineteen metallic elements from shock-wave measurements to two megabars [J]. Journal of Applied Physics, 1960, 31(7): 1253–1269. DOI: 10.1063/1.1735815.
|
[24] |
徐锡申, 张万箱. 实用物态方程理论导引 [M]. 北京: 科学出版社, 1986.
|
[25] |
CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding [J]. International Journal of Impact Engineering, 2001, 26(1−10): 93–104. DOI: 10.1016/S0734-743X(01)00070-7.
|
[26] |
SCHONBERG W P. Using modified ballistic limit equations in spacecraft risk assessments [J]. Acta Astronautica, 2016, 126: 199–204. DOI: 10.1016/j.actaastro.2016.03.038.
|
[1] | QIAN Bingwen, ZHOU Gang, CHEN Chunlin, MA Kun, LI Yishuo, GAO Pengfei, YIN Lixin. Measurement and analysis of stress waves in concrete target under hypervelocity impact[J]. Explosion And Shock Waves, 2025, 45(5): 054101. doi: 10.11883/bzycj-2024-0181 |
[2] | REN Siyuan, WU Qiang, ZHANG Pinliang, SONG Guangming, CHEN Chuan, GONG Zizheng, LI Zhengyu. A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure[J]. Explosion And Shock Waves, 2024, 44(7): 073302. doi: 10.11883/bzycj-2023-0272 |
[3] | MA Kun, LI Mingrui, CHEN Chunlin, SHEN Zikai, ZHOU Gang. The application of a modified constitutive model of metals in the simulation of hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(9): 091406. doi: 10.11883/bzycj-2021-0315 |
[4] | LIAO Huming, LI Bo, FAN Jiang, JIAO Lixin, YU Shuaichao, LIN Jianyu, PEI Xiaoyang. OTM analysis of debris cloud under hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275 |
[5] | ZHOU Zhixuan, WANG Mafa, LI Junling, MA Zhaoxia. Crater characteristics of carbon fiber/epoxy composite under hypervelocity impact in the velocity range from 3.0 km/s to 6.5 km/s[J]. Explosion And Shock Waves, 2022, 42(8): 083301. doi: 10.11883/bzycj-2021-0251 |
[6] | CHI Runqiang, DUAN Yongpan, PANG Baojun, CAI Yuan. Effects of gas pressure on the front wall damage of pressure vessel impacted by hypervelocity projectile[J]. Explosion And Shock Waves, 2021, 41(2): 021404. doi: 10.11883/bzycj-2020-0310 |
[7] | WEN Xuezhong, HUANG Jie, ZHAO Junyao, KE Fawei, MA Zhaoxia, LIU Sen. Comparative study of simulation and experiment on shielding performance of shield with separated rear wall[J]. Explosion And Shock Waves, 2021, 41(2): 021409. doi: 10.11883/bzycj-2020-0323 |
[8] | SONG Guangming, LI Ming, WU Qiang, GONG Zizheng, ZHANG Pinliang, CAO Yan. Debris cloud characteristics of graded-impedance shields under hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021405. doi: 10.11883/bzycj-2020-0299 |
[9] | WU Qiang, ZHANG Qingming, GONG Zizheng, REN Siyuan, LIU Hai. Experimental investigation into performances of an active Whipple shield against hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021406. doi: 10.11883/bzycj-2020-0266 |
[10] | FAN Jiang, YUAN Yuan, LIAO Huming, YUAN Qinghao, CHEN Gaoxiang, LI Bo. Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method[J]. Explosion And Shock Waves, 2020, 40(7): 074201. doi: 10.11883/bzycj-2019-0241 |
[11] | QIAN Bingwen, ZHOU Gang, LI Jin, LI Yunliang, ZHANG Dezhi, ZHANG Xiangrong, ZHU Yurong, TAN Shushun, JING Jiyong, ZHANG Zidong. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target[J]. Explosion And Shock Waves, 2019, 39(8): 083301. doi: 10.11883/bzycj-2019-0141 |
[12] | ZHANG Pinliang, SONG Guangming, GONG Zizheng, TIAN Dongbo, WU Qiang, CAO Yan, LI Yu, LI Ming. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials[J]. Explosion And Shock Waves, 2019, 39(12): 125101. doi: 10.11883/bzycj-2018-0461 |
[13] | Liu Yuan, Pang Baojun, Chi Runqiang, Cao Wuxiong, Zhang Zhiyuan. Wavelet transformation based damage feature extraction ofhypervelocity impact acoustic emission signalon honeycomb core sandwich[J]. Explosion And Shock Waves, 2017, 37(5): 785-792. doi: 10.11883/1001-1455(2017)05-0785-08 |
[14] | Jia Guzhai, Ha Yue, Pang Baojun, Guan Gongshun, Zu Shiming. Ballistic limit and damage properties of basalt/Kevlar stuffed shield[J]. Explosion And Shock Waves, 2016, 36(4): 433-440. doi: 10.11883/1001-1455(2016)04-0433-08 |
[15] | ZHANG Xiao-tian, JIA Guang-hui, HUANG Hai. Simulationofhypervelocity-impactdebrisclouds usingaLagrangeFEM withnodeseparation[J]. Explosion And Shock Waves, 2010, 30(5): 499-504. doi: 10.11883/1001-1455(2010)05-0499-06 |
[16] | CHI Run-qiang, PANG Bao-jun, HE Mao-jian, GUAN Gong-shun, YANG Zhen-qi, ZHU Yao. Experimental investigation for deformation and fragmentation of spheres penetrating sheets at hypervelocity[J]. Explosion And Shock Waves, 2009, 29(3): 231-236. doi: 10.11883/1001-1455(2009)03-0231-06 |
[17] | HA Yue, GUAN Gong-shun, PANG Bao-jun, ZHANG Wei. Effects of bumper lateral size on high-velocity impact damage to Whipple shield[J]. Explosion And Shock Waves, 2008, 28(1): 10-16. doi: 10.11883/1001-1455(2008)01-0010-07 |
[18] | ZHANG Yong-qiang, GUAN Gong-shun, ZHANG Wei, PANG Bao-jun. Characteristics of debris cloud produced by normal impact of spherical projectile on thin plate shield[J]. Explosion And Shock Waves, 2007, 27(6): 546-552. doi: 10.11883/1001-1455(2007)06-0546-07 |
[19] | ZHANG Wei, MA Wen-lai, GUAN Gong-shun, PANG Bao-jun. Numerical simulation of non-spherical projectiles hypervelocity impact on spacecraft shield configuration[J]. Explosion And Shock Waves, 2007, 27(3): 240-245. doi: 10.11883/1001-1455(2007)03-0240-06 |
[20] | JIA Guang-hui, HUANG Hai, HU Zhen-dong. Simulation analyse of hypervelocity impact perforation[J]. Explosion And Shock Waves, 2005, 25(1): 47-53. doi: 10.11883/1001-1455(2005)01-0047-07 |