Citation: | WANG Qi, ZHI Xiaoqi, XIAO You, HAO Chunjie. Analysis of the effect of a venting structure on slow cookoff of Comp-B based on a universal cookoff model[J]. Explosion And Shock Waves, 2022, 42(4): 042301. doi: 10.11883/bzycj-2021-0253 |
[1] |
黄亨建, 陈科全, 陈红霞, 等. 国外钝感弹药危害缓解设计的原理和方法 [J]. 含能材料, 2019, 27(11): 974–980. DOI: 10.11943/CJEM2019155.
HUANG H J, CHEN K Q, CHEN H X, et al. Principles and methods for insensitive munitions hazard mitigation design [J]. Chinese Journal of Energetic Materials, 2019, 27(11): 974–980. DOI: 10.11943/CJEM2019155.
|
[2] |
MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives: UCRL-84986 [R]. California, USA: Lawrence Livermore National Laboratory, 1981.
|
[3] |
ZERKLE D K. Composition B decomposition and ignition model [C]//Proceedings of the 13th International Detonation Symposium. Norfolk, USA, 2006: 771−777.
|
[4] |
HOBBS M L, KANESHIGE M J, ERIKSON W W, et al. Cookoff modeling of a melt cast explosive (Comp-B) [J]. Combustion and Flame, 2020, 215: 36–50. DOI: 10.1016/J.COMBUSTFLAME.2020.01.022.
|
[5] |
GRAHAM K J. Mitigation of fuel fire threat to large rocket motors by venting [C]//Proceedings of the IMEMTS Symposium. Munich, Germany, 2010.
|
[6] |
徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响 [J]. 高压物理学报, 2021, 35(3): 035201. DOI: 10.11858/gywlxb.20200657.
XU R, ZHI X Q, WANG S. Influence of venting structure on the cook-off response intensity of composition B [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. DOI: 10.11858/gywlxb.20200657.
|
[7] |
MOONEY M. The viscosity of a concentrated suspension of spherical particles [J]. Journal of Colloid Science, 1951, 6(2): 162–170. DOI: 10.1016/0095-8522(51)90036-0.
|
[8] |
DAVIS S M, ZERKLE D K, SMILOWITZ L B, et al. Integrated rheology model: explosive composition B-3 [J]. Journal of Energetic Materials, 2018, 36(4): 398–411. DOI: 10.1080/07370652.2018.1451573.
|
[9] |
周捷, 智小琦, 王帅, 等. B炸药慢速烤燃过程的流变特性 [J]. 爆炸与冲击, 2020, 40(5): 052301. DOI: 10.11883/bzycj-2019-0321.
ZHOU J, ZHI X Q, WANG S, et al. Rheological properties of composition B in slow cook-off process [J]. Explosion and Shock Waves, 2020, 40(5): 052301. DOI: 10.11883/bzycj-2019-0321.
|
[10] |
SARANGAPANI R, RAMAVAT V, REDDY S, et al. Rheology studies of NTO-TNT based melt-cast dispersions and influence of particle-dispersant interactions [J]. Powder Technology, 2015, 273: 118–124. DOI: 10.1016/J.POWTEC.2014.12.013.
|
[11] |
周建兴, 刘瑞祥, 陈立亮, 等. 凝固过程数值模拟中的潜热处理方法 [J]. 铸造, 2001, 50(7): 404–407. DOI: 10.3321/j.issn:1001-4977.2001.07.010.
ZHOU J X, LIU R X, CHEN L L, et al. The approaches of latent heat treatment [J]. Foundy, 2001, 50(7): 404–407. DOI: 10.3321/j.issn:1001-4977.2001.07.010.
|
[1] | GUO Lu, ZHI Xiaoqi, QU Kepeng, LIU Xinghe, JIA Jie, LI Jin. Calculation of pressure parameters at ignition moment of HMX-based aluminized pressed explosives during slow cook-off[J]. Explosion And Shock Waves, 2024, 44(6): 062303. doi: 10.11883/bzycj-2023-0353 |
[2] | XIAO Youcai, WANG Ruisheng, FAN Chenyang, ZHANG Hong, WANG Zhijun, SUN Yi. Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation[J]. Explosion And Shock Waves, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555 |
[3] | HU Pingchao, LI Tao, LIU Cangli, FU Hua. Effect of initial void ratio on phase transition of confined HMX-based PBX-3 under slow cook-off[J]. Explosion And Shock Waves, 2023, 43(6): 062301. doi: 10.11883/bzycj-2022-0489 |
[4] | ZHANG Kebin, LI Wenbin, ZHENG Yu, YAO Wenjin, ZHAO Changfang, HONG Dou. Critical vent area of a Comp-B warhead under fast cook-off[J]. Explosion And Shock Waves, 2023, 43(5): 052301. doi: 10.11883/bzycj-2022-0234 |
[5] | ZHANG Haijun, NIE Jianxin, WANG Ling, WANG Dong, HU Feng, GUO Xueyong. Effect of pre-ignition on slow cook-off response characteristics of composite propellant[J]. Explosion And Shock Waves, 2022, 42(10): 102901. doi: 10.11883/bzycj-2021-0521 |
[6] | DAI Xianghui, WANG Kehui, SHEN Zikai, DUAN Jian, LI Ming, GU Renhong, LI Pengjie, YANG Hui, KE Ming, ZHOU Gang. Experiment of fast cook-off safety characteristic for penetrator[J]. Explosion And Shock Waves, 2020, 40(9): 092301. doi: 10.11883/bzycj/2020-0016 |
[7] | ZHOU Jie, ZHI Xiaoqi, WANG Shuai, FAN Xinghua. Influences of the heating rate and rheological properties on slow cook-off response of composition B[J]. Explosion And Shock Waves, 2020, 40(12): 122302. doi: 10.11883/bzycj-2019-0431 |
[8] | ZHOU Jie, ZHI Xiaoqi, WANG Shuai, HAO Chunjie. Rheological properties of Composition B in slow cook-off process[J]. Explosion And Shock Waves, 2020, 40(5): 052301. doi: 10.11883/bzycj-2019-0321 |
[9] | YE Qing, YU Yonggang. Numerical analysis of slow cook-off characteristics for solid rocket motor with natural convection[J]. Explosion And Shock Waves, 2019, 39(6): 062101. doi: 10.11883/bzycj-2018-0163 |
[10] | LIU Zide, ZHI Xiaoqi, ZHOU Jie, WANG Shuai. Influence of explosive mass and heating rate on cook-off response characteristics of DNAN based casting explosive[J]. Explosion And Shock Waves, 2019, 39(1): 012301. doi: 10.11883/bzycj-2018-0264 |
[11] | LIU Jian, YAO Jian, SONG Shuzhong, LI Bin, XIE Lifeng, WANG Yongxu. Experimental study on cook-off performance of diesel fuel[J]. Explosion And Shock Waves, 2018, 38(3): 534-540. doi: 10.11883/bzycj-2016-0291 |
[12] | Li Wenfeng, Yu Yonggang, Ye Rui, Yang Houwen. Simulation of cook-off for AP/HTPB composition propellant in base bleed unit at different heating rates[J]. Explosion And Shock Waves, 2017, 37(1): 46-52. doi: 10.11883/1001-1455(2017)01-0046-07 |
[13] | Ma Xin, Chen Lang, Lu Feng, Wu Jun-ying. Calculation on multi-step thermal decomposition of HMX-and TATB-based composite explosive under cook-off conditions[J]. Explosion And Shock Waves, 2014, 34(1): 67-74. doi: 10.11883/1001-1455(2014)01-0067-08 |
[14] | Xiang Mei, Huang Yi-min, Rao Guo-ning, Peng Jin-hua. Cook-off test and numerical simulation for composite charge at different heating rates[J]. Explosion And Shock Waves, 2013, 33(4): 394-400. doi: 10.11883/1001-1455(2013)04-0394-07 |
[15] | ZhiXiao-qi, HuShuang-qi. Influencesofchargedensitiesonresponses ofexplosivestoslowcook-off[J]. Explosion And Shock Waves, 2013, 33(2): 221-224. doi: 10.11883/1001-1455(2013)02-0221-04 |
[16] | HUANG Ju, WANG Bo-liang, ZHONG Qian, HUIJun-ming. Apreliminaryinvestigationonenergyoutputstructureof athermobaricexplosive[J]. Explosion And Shock Waves, 2012, 32(2): 164-168. doi: 10.11883/1001-1455(2012)02-0164-05 |
[17] | FENG Xiao-jun, WANG Xiao-feng. Influences of charge porosity on cook-off response of explosive[J]. Explosion And Shock Waves, 2009, 29(1): 109-112. doi: 10.11883/1001-1455(2009)01-0109-04 |
[18] | WEN Shang-gang, WANG Sheng-qiang, HUANG Wen-bin, ZHAO Feng, WANG Shi-ying, RAO Bao-xue. An experimental study on deflagration-to-detonation transition in high-density composition B[J]. Explosion And Shock Waves, 2007, 27(6): 567-571. doi: 10.11883/1001-1455(2007)06-0567-05 |
[19] | FENG Xiao-jun, WANG Xiao-feng, HAN Zhu-long. The study of charging size influence on the response of explosives in slow cook-off test[J]. Explosion And Shock Waves, 2005, 25(3): 285-288. doi: 10.11883/1001-1455(2005)03-0285-04 |