Volume 42 Issue 5
May  2022
Turn off MathJax
Article Contents
CHENG Yuehua, WU Hao, TAN Keke, JIANG Pengfei, ZHANG Dong, FANG Qin. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets[J]. Explosion And Shock Waves, 2022, 42(5): 053302. doi: 10.11883/bzycj-2021-0278
Citation: CHENG Yuehua, WU Hao, TAN Keke, JIANG Pengfei, ZHANG Dong, FANG Qin. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets[J]. Explosion And Shock Waves, 2022, 42(5): 053302. doi: 10.11883/bzycj-2021-0278

Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets

doi: 10.11883/bzycj-2021-0278
  • Received Date: 2021-07-01
  • Rev Recd Date: 2021-09-10
  • Available Online: 2022-05-05
  • Publish Date: 2022-05-27
  • Armor steel/ultra-high performance concrete (UHPC) composite structures have a wide application prospect in the protective structures against the high-speed projectile penetration. Aiming to evaluate the penetration resistance of the composite targets, both field tests and numerical simulations were carried out on two types of armor steel/UHPC composite targets. Firstly, twelve 30mm-caliber 30CrMnSiNi2A steel projectile penetration tests on different armor steel/UHPC composite targets were conducted with the striking velocities varying from 372 m/s to 646 m/s. Compared to the UHPC target, the armor/UHPC composite targets present high penetration resistance and low areal density. The test results show that the penetration resistance of the NP500/UHPC composite target with an armor steel thickness of 5 mm can be increased by 35.7% compared to that of the NP450/UHPC composite target. Besides, a series of static and dynamic mechanical tests for armor steels were conducted to calibrate the parameters of the constitutive model. Then, 3D finite element models were established and the corresponding numerical simulations were carried out. The parameters of the constitutive model of the armor steel were validated by comparing the experimental penetration depth, residual projectile length and failure mode of the armor steel plate with the numerical results. Furthermore, the impact resistance of the armor steel/UHPC composite targets was discussed quantitatively via the ballistic efficiency factor. For the cases in this study, the composite target with 8mm thick NP500 armor steel exhibits the best ballistic performance. Finally, the critical perforation velocities of two types of armor steels with different thicknesses in the composite targets were determined. The failure modes of the projectile and target were further discussed. As the strength and hardness of the armor steel increase, the failure mode changes from shear plugging failure to ductile hole expansion failure.
  • loading
  • [1]
    SILSBY G F. Penetration of semi-infinite steel targets by tungsten rods at 1.3 to 4.5 km/s [C]// Proceeding of the 8th International Symposium on Ballistics. Orlando, USA: International Ballistics Society, 1984.
    [2]
    FRAS T, ROTH C C, MOHR D. Fracture of high-strength armor steel under impact loading [J]. International Journal of Impact Engineering, 2018, 111: 147–164. DOI: 10.1016/j.ijimpeng.2017.09.009.
    [3]
    FRAS T, ROTH C C, MOHR D. Dynamic perforation of ultra-hard high-strength armor steel: impact experiments and modeling [J]. International Journal of Impact Engineering, 2019, 131: 256–271. DOI: 10.1016/j.ijimpeng.2019.05.008.
    [4]
    CHOUDHARY S, SINGH P K, KHARE S, et al. Ballistic impact behaviour of newly developed armour grade steel: an experimental and numerical study [J]. International Journal of Impact Engineering, 2020, 140: 103557. DOI: 10.1016/j.ijimpeng.2020.103557.
    [5]
    FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [6]
    FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [7]
    FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
    [8]
    HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
    [9]
    SOVJÁK R, VAVŘINÍK T, MÁCA P, et al. Experimental investigation of ultra-high performance fiber reinforced concrete slabs subjected to deformable projectile impact [J]. Procedia Engineering, 2013, 65: 120–125. DOI: 10.1016/j.proeng.2013.09.021.
    [10]
    SOVJÁK R, VAVŘINÍ T, ZATLOUKAL J, et al. Resistance of slim UHPFRC targets to projectile impact using in-service bullets [J]. International Journal of Impact Engineering, 2015, 76: 166–177. DOI: 10.1016/j.ijimpeng.2014.10.002.
    [11]
    MÁCA P, SOVJÁK R, KONVALINKA P. Mix design of UHPFRC and its response to projectile impact [J]. International Journal of Impact Engineering, 2014, 63: 158–163. DOI: 10.1016/j.ijimpeng.2013.08.003.
    [12]
    WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
    [13]
    WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
    [14]
    LIU J, WU C Q, LI J, et al. Ceramic balls protected ultra-high performance concrete structure against projectile impact: a numerical study [J]. International Journal of Impact Engineering, 2019, 125: 143–162. DOI: 10.1016/j.ijimpeng.2018.11.006.
    [15]
    SHAO R Z, WU C Q, SU Y, et al. Experimental and numerical investigations of penetration resistance of ultra-high strength concrete protected with ceramic balls subjected to projectile impact [J]. Ceramics International, 2019, 45(6): 7961–7975. DOI: 10.1016/j.ceramint.2019.01.110.
    [16]
    FENG J, SUN W W, LIU Z L, et al. An armour-piercing projectile penetration in a double-layered target of ultra-high-performance fiber reinforced concrete and armour steel: Experimental and numerical analyses [J]. Materials & Design, 2016, 102: 131–141. DOI: 10.1016/j.matdes.2016.04.021.
    [17]
    李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardness [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
    [18]
    中华人民共和国建设部, 国家质量监督检验检疫总局. 普通混凝土力学性能试验方法标准: GB/T 50081—2002 [S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Construction, People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002 [S]. Beijing: China Architecture & Building Press, 2003.
    [19]
    ZHAI Y X, WU H, FANG Q. Impact resistance of armor steel/ceramic/UHPC layered composite targets against 30CrMnSiNi2A steel projectiles [J]. International Journal of Impact Engineering, 2021, 154: 103888. DOI: 10.1016/j.ijimpeng.2021.103888.
    [20]
    Livermore Software Technology Corporation. LS-DYNA keywords user’s manual [M]. Livermore: Livermore Software Technology Corporation, 2001.
    [21]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]// Proceedings of the 7th International Symposium on Ballistics. The Hague, 1983: 541-547.
    [22]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [23]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 拉伸试验 第1部分: 室温试验方法: GB/T 228.1—2010 [S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Metallic materials-tensile testing-Part 1: method of test at room temperature: GB/T 228.1—2010 [S]. Beijing: Standards Press of China, 2010.
    [24]
    DEY S, BØRVIK T, HOPPERSTAD O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes [J]. International Journal of Impact Engineering, 2004, 30(8/9): 1005–1038. DOI: 10.1016/j.ijimpeng.2004.06.004.
    [25]
    BØRVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. DOI: 10.1016/j.ijimpeng.2008.12.003.
    [26]
    BØRVIK T. DEY S, CLAUSEN A H. A preliminary study on the perforation resistance of high-strength steel plates [J]. Journal de Physique IV, 2006, 134: 1053–1059. DOI: 10.1051/jp4:2006134161.
    [27]
    STEINBERG D J. Equation of state and strength properties of selected materials: UCRL-MA-106439 [R]. Livermore: Lawrence Livermore National Laboratory, 1996.
    [28]
    HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J]. Journal of Applied Mechanics, 2011, 78(5): 051003. DOI: 10.1115/1.4004326.
    [29]
    REN G M, WU H, FANG Q, et al. Parameters of Holmquist-Johnson-Cook model for high-strength concrete-like materials under projectile impact [J]. International Journal of Protective Structures, 2017, 8(3): 352–367. DOI: 10.1177/2041419617721552.
    [30]
    WU H, LI Y C, FANG Q, et al. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses [J]. Construction and Building Materials, 2019, 208: 506–524. DOI: 10.1016/j.conbuildmat.2019.03.040.
    [31]
    LIU F, FENG W H, XIONG Z, et al. Impact performance of new prestressed high-performance concrete pipe piles manufactured with an environmentally friendly technique [J]. Journal of Cleaner Production, 2019, 231: 683–697. DOI: 10.1016/j.jclepro.2019.05.241.
    [32]
    CAO Y Y Y, YU Q L, TANG W H, et al. Numerical investigation on ballistic performance of coarse-aggregated layered UHPFRC [J]. Construction and Building Materials, 2020, 250: 118867. DOI: 10.1016/j.conbuildmat.2020.118867.
    [33]
    GOOCH W A, BURKINS M S, PALICKA J J. Ballistic development of U.S. high density tungsten carbide ceramics [C]// International Conference on Advanced Ceramics and Glasses. Hawaii, 2001: 53–61.
    [34]
    MADHU V, RAMANJANEYULU K, BHAT T B, et al. An experimental study of penetration resistance of ceramic armour subjected to projectile impact [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 337–350. DOI: 10.1016/j.ijimpeng.2005.03.004.
    [35]
    BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part II: numerical simulations [J]. International Journal of Impact Engineering, 2002, 27(1): 37–64. DOI: 10.1016/S0734-743X(01)00035-5.
    [36]
    WANG Y P, CHEN X Z, XIAO X K, et al. Effect of Lode angle incorporation into a fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates struck by cylindrical projectiles with different nose shapes [J]. International Journal of Impact Engineering, 2020, 139: 103498. DOI: 10.1016/j.ijimpeng.2019.103498.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(28)  / Tables(10)

    Article Metrics

    Article views (353) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return