Citation: | MA Kun, LI Mingrui, CHEN Chunlin, SHEN Zikai, ZHOU Gang. The application of a modified constitutive model of metals in the simulation of hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(9): 091406. doi: 10.11883/bzycj-2021-0315 |
[1] |
邸德宁, 陈小伟, 文肯, 等. 超高速碰撞产生的碎片云研究进展 [J]. 兵工学报, 2018, 39(10): 2016–2047. DOI: 10.3969/j.issn.1000-1093.2018.10.018.
DI D N, CHEN X W, WEN K, et al. A review on the study of debris cloud produced by normal hypervelocity impact upon a thin plate [J]. Acta Armamentarii, 2018, 39(10): 2016–2047. DOI: 10.3969/j.issn.1000-1093.2018.10.018.
|
[2] |
宋光明, 武强, 李明, 等. 超高速撞击下空间碎片形状效应研究进展 [J]. 装备环境工程, 2020, 17(3): 45–52. DOI: 10.7643/issn.1672-9242.2020.03.008.
SONG G M, WU Q, LI M, et al. Research progress in shape effect of space debris under hypervelocity impact [J]. Equipment Environmental Engineering, 2020, 17(3): 45–52. DOI: 10.7643/issn.1672-9242.2020.03.008.
|
[3] |
焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 201904. DOI: 10.6052/1000-0992-17-021.
JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 201904. DOI: 10.6052/1000-0992-17-021.
|
[4] |
RANDLES P W, LIBERSKY L D. Smoothed particle hydrodynamics: some recent improvements and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 375–408. DOI: 10.1016/S0045-7825(96)01090-0.
|
[5] |
周旭, 张雄. 物质点法数值仿真(软件)系统及应用 [M]. 北京: 国防工业出版社, 2015: 6–9.
ZHOU X, ZHANG X. Material point method simulation system [M]. Beijing: National Defense Industry Press, 2015: 6–9.
|
[6] |
LI B, KIDANE A, RAVICHANDRAN G, et al. Verification and validation of the optimal transportation meshfree (OTM) simulation of terminal ballistics [J]. International Journal of Impact Engineering, 2012, 42: 25–36. DOI: 10.1016/j.ijimpeng.2011.11.003.
|
[7] |
经福谦. 实验物态方程导引 [M]. 北京: 科学出版社, 1999: 25–29.
|
[8] |
唐蜜. 基于欧拉方法的超高速撞击程序研制及碎片云相分布数值模拟 [D]. 四川绵阳: 中国工程物理研究院, 2015: 45–51.
TANG M. Development of hypervelocity impact codes based on Euler method and numerical study of the phase distribution in debris cloud [D]. Mianyang, Sichuan: China Academy of Engineering Physics, 2015: 45–51.
|
[9] |
ZHANG X T, JIA G H, HUANG H. A fast numerical approach for Whipple shield ballistic limit analysis [J]. Acta Astronautica, 2014, 93: 112–120. DOI: 10.1016/j.actaastro.2013.06.014.
|
[10] |
CHI R Q, PANG B J, GUAN G S, et al. Analysis of debris clouds produced by impact of aluminum spheres with aluminum sheets [J]. International Journal of Impact Engineering, 2008, 35(12): 1465–1472. DOI: 10.1016/j.ijimpeng.2008.07.009.
|
[11] |
BEISSEL S R, GERLACH C A, JOHNSON G R. A quantitative analysis of computed hypervelocity debris clouds [J]. International Journal of Impact Engineering, 2008, 35(12): 1410–1418. DOI: 10.1016/j.ijimpeng.2008.07.059.
|
[12] |
COLLÉ A, LIMIDO J, VILA J P. An accurate SPH scheme for dynamic fragmentation modelling [J]. The European Physical Journal Conferences, 2018, 183: 01030. DOI: 10.1051/epjconf/201818301030.
|
[13] |
邸德宁, 陈小伟. 碎片云SPH方法数值模拟中的材料失效模型 [J]. 爆炸与冲击, 2018, 38(5): 948–956. DOI: 10.11883/bzycj-2017-0328.
DI D N, CHEN X W. Material failure models in SPH simulation of debris cloud [J]. Explosion and Shock Waves, 2018, 38(5): 948–956. DOI: 10.11883/bzycj-2017-0328.
|
[14] |
POVARNITSYN M E, KHISHCHENKO K V, LEVASHOV P R. Simulation of shock-induced fragmentation and vaporization in metals [J]. International Journal of Impact Engineering, 2008, 35(12): 1723–1727. DOI: 10.1016/j.ijimpeng.2008.07.011.
|
[15] |
EFTIS J, CARRASCO C, OSEGUEDA R A. A constitutive-microdamage model to simulate hypervelocity projectile-target impact, material damage and fracture [J]. International Journal of Plasticity, 2003, 19(9): 1321–1354. DOI: 10.1016/S0749-6419(02)00036-0.
|
[16] |
FENG J P, JING F Q, ZHANG G R. Dynamic ductile fragmentation and the damage function model [J]. Journal of Applied Physics, 1997, 81(6): 2575–2578. DOI: 10.1063/1.363921.
|
[17] |
SEISSON G, HÉBERT D, BERTRON I, et al. Dynamic cratering of graphite: experimental results and simulations [J]. International Journal of Impact Engineering, 2014, 63: 18–28. DOI: 10.1016/j.ijimpeng.2013.08.001.
|
[18] |
CORBETT B M. Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers [J]. International Journal of Impact Engineering, 2006, 33(1): 431–440. DOI: 10.1016/j.ijimpeng.2006.09.086.
|
[19] |
ZHANG X T, LI X G, LIU T, et al. Element fracture technique for hypervelocity impact simulation [J]. Advances in Space Research, 2015, 55(9): 2293–2304. DOI: 10.1016/j.asr.2015.01.040.
|
[20] |
曹祥, 汤佳妮, 王珠, 等. 损伤演化对韧性金属碎裂过程的影响 [J]. 爆炸与冲击, 2020, 40(1): 013102. DOI: 10.11883/bzycj-2019-0041.
CAO X, TANG J N, WANG Z, et al. Effect of damage evolution on the fragmentation process of ductile metals [J]. Explosion and Shock Waves, 2020, 40(1): 013102. DOI: 10.11883/bzycj-2019-0041.
|
[21] |
ROYCE E B. GRAY, a three-phase equation of state for metals: UCRL-51121 [R]. Livermore: Lawrence Livermore National Laboratory, California University, 1971.
|
[22] |
兰彬, 文鹤鸣. 钨合金长杆弹侵彻半无限钢靶的数值模拟及分析 [J]. 高压物理学报, 2008, 22(3): 245–252. DOI: 10.11858/gywlxb.2008.03.004.
LAN B, WEN H M. Numerical simulation and analysis of the penetration of tungsten-alloy long rod into semi-infinite armor steel targets [J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 245–252. DOI: 10.11858/gywlxb.2008.03.004.
|
[23] |
GMX-6 Group. Selected Hugoniots: LA-4167-MS [R]. Los Alamos, NM: Los Alamos Scientific Laboratory, 1969.
|
[24] |
于文静. 导管架海洋平台钢结构在爆炸和火灾作用下的力学性能研究 [D]. 上海: 上海交通大学, 2012: 36–37.
YU W J. Study on mechanical properties of steel jacket offshore platform in blast and fire [D]. Shanghai: Shanghai Jiaotong University, 2012: 36–37.
|
[25] |
钱伟长. 穿甲力学 [M]. 北京: 国防工业出版社, 1984: 336–340.
|
[26] |
LIANG S C, LI Y, CHEN H, et al. Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set [J]. International Journal of Impact Engineering, 2013, 56: 27–31. DOI: 10.1016/j.ijimpeng.2012.07.004.
|
[1] | QIAN Bingwen, ZHOU Gang, CHEN Chunlin, MA Kun, LI Yishuo, GAO Pengfei, YIN Lixin. Measurement and analysis of stress waves in concrete target under hypervelocity impact[J]. Explosion And Shock Waves, 2025, 45(5): 054101. doi: 10.11883/bzycj-2024-0181 |
[2] | REN Siyuan, WU Qiang, ZHANG Pinliang, SONG Guangming, CHEN Chuan, GONG Zizheng, LI Zhengyu. A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure[J]. Explosion And Shock Waves, 2024, 44(7): 073302. doi: 10.11883/bzycj-2023-0272 |
[3] | ZHANG Pinliang, CAO Yan, CHEN Chuan, SONG Guangming, WU Qiang, LI Yu, GONG Zizheng, LI Ming. Ballistic limit of an impedance-graded-material enhanced Whipple shield[J]. Explosion And Shock Waves, 2022, 42(2): 023301. doi: 10.11883/bzycj-2021-0230 |
[4] | ZHOU Zhixuan, WANG Mafa, LI Junling, MA Zhaoxia. Crater characteristics of carbon fiber/epoxy composite under hypervelocity impact in the velocity range from 3.0 km/s to 6.5 km/s[J]. Explosion And Shock Waves, 2022, 42(8): 083301. doi: 10.11883/bzycj-2021-0251 |
[5] | LIAO Huming, LI Bo, FAN Jiang, JIAO Lixin, YU Shuaichao, LIN Jianyu, PEI Xiaoyang. OTM analysis of debris cloud under hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275 |
[6] | ZHOU Gang, LI Mingrui, WEN Heming, QIAN Bingwen, SUO Tao, CHEN Chunlin, MA Kun, FENG Na. Mechanism on hypervelocity penetration of a tungsten alloy projectile into a concrete target[J]. Explosion And Shock Waves, 2021, 41(2): 021407. doi: 10.11883/bzycj-2020-0304 |
[7] | WU Qiang, ZHANG Qingming, GONG Zizheng, REN Siyuan, LIU Hai. Experimental investigation into performances of an active Whipple shield against hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021406. doi: 10.11883/bzycj-2020-0266 |
[8] | CHI Runqiang, DUAN Yongpan, PANG Baojun, CAI Yuan. Effects of gas pressure on the front wall damage of pressure vessel impacted by hypervelocity projectile[J]. Explosion And Shock Waves, 2021, 41(2): 021404. doi: 10.11883/bzycj-2020-0310 |
[9] | FAN Jiang, YUAN Yuan, LIAO Huming, YUAN Qinghao, CHEN Gaoxiang, LI Bo. Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method[J]. Explosion And Shock Waves, 2020, 40(7): 074201. doi: 10.11883/bzycj-2019-0241 |
[10] | LI Yixiao, WANG Shengjie. Simulation of hypervelocity impact by the material point method coupled with a new equation of state[J]. Explosion And Shock Waves, 2019, 39(10): 104201. doi: 10.11883/bzycj-2018-0261 |
[11] | ZHANG Pinliang, SONG Guangming, GONG Zizheng, TIAN Dongbo, WU Qiang, CAO Yan, LI Yu, LI Ming. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials[J]. Explosion And Shock Waves, 2019, 39(12): 125101. doi: 10.11883/bzycj-2018-0461 |
[12] | QIAN Bingwen, ZHOU Gang, LI Jin, LI Yunliang, ZHANG Dezhi, ZHANG Xiangrong, ZHU Yurong, TAN Shushun, JING Jiyong, ZHANG Zidong. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target[J]. Explosion And Shock Waves, 2019, 39(8): 083301. doi: 10.11883/bzycj-2019-0141 |
[13] | DI Dening, CHEN Xiaowei. Material failure models in SPH simulation of debris cloud[J]. Explosion And Shock Waves, 2018, 38(5): 948-956. doi: 10.11883/bzycj-2017-0328 |
[14] | Liu Yuan, Pang Baojun, Chi Runqiang, Cao Wuxiong, Zhang Zhiyuan. Wavelet transformation based damage feature extraction ofhypervelocity impact acoustic emission signalon honeycomb core sandwich[J]. Explosion And Shock Waves, 2017, 37(5): 785-792. doi: 10.11883/1001-1455(2017)05-0785-08 |
[15] | Jia Guzhai, Ha Yue, Pang Baojun, Guan Gongshun, Zu Shiming. Ballistic limit and damage properties of basalt/Kevlar stuffed shield[J]. Explosion And Shock Waves, 2016, 36(4): 433-440. doi: 10.11883/1001-1455(2016)04-0433-08 |
[16] | LIU Wen-xiang, ZHANG De-zhi, ZHANG Xiang-rong, ZHU Yu-rong, TAN Shu-shun. Ballisticlimitofanaluminumfoam-filledshield[J]. Explosion And Shock Waves, 2012, 32(1): 43-46. doi: 10.11883/1001-1455(2012)01-0043-04 |
[17] | ZHANG Xiao-tian, JIA Guang-hui, HUANG Hai. Simulationofhypervelocity-impactdebrisclouds usingaLagrangeFEM withnodeseparation[J]. Explosion And Shock Waves, 2010, 30(5): 499-504. doi: 10.11883/1001-1455(2010)05-0499-06 |
[18] | ZHANG Yong-qiang, GUAN Gong-shun, ZHANG Wei, PANG Bao-jun. Characteristics of debris cloud produced by normal impact of spherical projectile on thin plate shield[J]. Explosion And Shock Waves, 2007, 27(6): 546-552. doi: 10.11883/1001-1455(2007)06-0546-07 |
[19] | ZHANG Wei, MA Wen-lai, GUAN Gong-shun, PANG Bao-jun. Numerical simulation of non-spherical projectiles hypervelocity impact on spacecraft shield configuration[J]. Explosion And Shock Waves, 2007, 27(3): 240-245. doi: 10.11883/1001-1455(2007)03-0240-06 |
[20] | JIA Guang-hui, HUANG Hai, HU Zhen-dong. Simulation analyse of hypervelocity impact perforation[J]. Explosion And Shock Waves, 2005, 25(1): 47-53. doi: 10.11883/1001-1455(2005)01-0047-07 |
1. | 宋俊柏,刘振皓,吴振强,刘武刚,王龙,邢睿思. 隔热瓦组件低速撞击损伤特性及仿真研究. 航天器环境工程. 2025(01): 39-45 . ![]() | |
2. | 刘慕皓,张先锋,谈梦婷,包阔,韩国庆,李逸,孙伟境. 考虑微结构特征的陶瓷材料含损伤本构模型. 爆炸与冲击. 2024(01): 62-78 . ![]() | |
3. | 周若璞,曾治鑫,张雄. 超高速碰撞下相变效应的交错网格物质点法研究. 计算力学学报. 2024(01): 81-90 . ![]() | |
4. | 曹进,陈春林,马坤,高鹏飞,田洪畅,冯娜,钱秉文. 球形含能结构材料弹体超高速撞击多层薄钢靶的毁伤特性. 含能材料. 2023(08): 786-796 . ![]() |