LiYi-min, GaoZheng-guo, ZhuQing-qing, HuangXiao-bo, HuangXi. An experimental investigation into effects of blast-induced vibration on strength of early-age concrete[J]. Explosion And Shock Waves, 2013, 33(3): 243-248. doi: 10.11883/1001-1455(2013)03-0243-06
Citation: LIU Peng, CAI Yinglong, GU Jiahui, LUO Wei, ZHANG Chao. Experimental research on low-velocity impact and compression after impact of braided composites based on infrared thermal imaging[J]. Explosion And Shock Waves, 2022, 42(6): 063101. doi: 10.11883/bzycj-2021-0369

Experimental research on low-velocity impact and compression after impact of braided composites based on infrared thermal imaging

doi: 10.11883/bzycj-2021-0369
  • Received Date: 2021-09-02
  • Rev Recd Date: 2022-01-04
  • Available Online: 2022-04-20
  • Publish Date: 2022-06-24
  • The damage and failure mechanism of two-dimensional triaxially braided composite (2DTBC) under low-velocity impact and compression after impact (CAI) was experimentally investigated through tests with various impact energies (5, 10, 20 and 30 J). The low-velocity impact specimens were prepared according to the ASTM D7136 standard and tested using the Instron drop tower 9250HV with a hemispherical punch, and CAI tests were carried out on an Aowei PLD-250 fatigue machine following the ASTM D7137 standard. An infrared thermal imaging camera was employed to monitor the temperature distribution of the specimens during the low-velocity impact and CAI tests. Delamination damage of impacted specimens was characterized by an ICS-Ⅱ ultrasonic C-scanner. The relationship between impact energy and residual compression strength of 2DTBC after impact load was compared and analyzed. The evolution of the temperature field and its sensitivity against impact energy were discussed based on the infrared image data. Regarding the CAI tests, the global strain field was measured using the digital image correlation (DIC). Combining the thermal and deformation fields, and the optical failure images, the compression failure behavior of 2DTBC after impact of different energies were systematically investigated, validating the feasibility of infrared thermal imaging technology on characterizing the damage and failure behavior of braided composites. The experimental results show that the temperature field contours in low-velocity impact and CAI tests of braided composites are significantly correlated with braided architecture. The magnitude of temperature rise during the low-velocity impact test increases rapidly with the increase of impact energy, while the magnitude of temperature rise during the CAI test decreases with the increase of impact energy. Moreover, the maximum temperature rise is about 56.2 ºC in the 30 J low-velocity impact test. The delamination area is found to increase with the increase of impact energy, and the residual compression strength after impact decreases with the increase of impact energy. The residual compression strengths ratios are 90.9%, 82.2%, 73.8% and 65.8% for specimens after 5, 10, 20 and 30 J impacts, respectively. Through this study, we demonstrate that infrared thermal imaging camera can clearly capture the temperature rise phenomenon of composite specimens, which is caused by the releasing of fracture energy at the failure instant. More notably, the temperature contour can better reflect the damage location and failure characteristics than the global strain field.
  • [1]
    范玉青, 张丽华. 超大型复合材料机体部件应用技术的新进展: 飞机制造技术的新跨越 [J]. 航空学报, 2009, 30(3): 534–543. DOI: 10.3321/j.issn:1000-6893.2009.03.022.

    FAN Y Q, ZHANG L H. New development of extra large composite aircraft components application technology-advance of aircraft manufacture technology [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 534–543. DOI: 10.3321/j.issn:1000-6893.2009.03.022.
    [2]
    ASTM Committee D30 on Composite Materials. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M—15 [S]. West Conshohocken, PA, United States: ASTM International, 2015.
    [3]
    ASTM Committee D30 on Composite Materials. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137M—17 [S]. West Conshohocken, PA, United States: ASTM International, 2017.
    [4]
    Technical Committee PRI/42. Carbon-fibre-reinforced plastics: determination of compression-after-impact properties at a specified impact-energy level: BS ISO 18352: 2009 [S]. Switzerland: International Organization for Standardization, 2009.
    [5]
    中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 纤维增强塑料层合板冲击后压缩性能试验方法: GB/T 21239—2007 [S]. 北京: 质检出版社, 2007.
    [6]
    TUO H L, LU Z X, MA X P, et al. Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions [J]. Composites Part B: Engineering, 2019, 163: 642–654. DOI: 10.1016/j.compositesb.2019.01.006.
    [7]
    JOHNSTON J P, PEREIRA J M, RUGGERI C R, et al. High-speed infrared thermal imaging during ballistic impact of triaxially braided composites [J]. Journal of Composite Materials, 2018, 52(25): 3549–3562. DOI: 10.1177/0021998318765290.
    [8]
    ZHANG W, GU B H, SUN B Z. Thermal-mechanical coupling modeling of 3D braided composite under impact compression loading and high temperature field [J]. Composites Science and Technology, 2017, 140: 73–88. DOI: 10.1016/j.compscitech.2016.12.019.
    [9]
    PAN Z X, WU Z Y, XIONG J. High-speed infrared imaging and mesostructural analysis of localized temperature rise in damage and failure behavior of 3-D braided carbon/epoxy composite subjected to high strain-rate compression [J]. Polymer Testing, 2019, 80: 106151. DOI: 10.1016/j.polymertesting.2019.106151.
    [10]
    SORINI C, CHATTOPADHYAY A, GOLDBERG R K. Micromechanical modeling of the effects of adiabatic heating on the high strain rate deformation of polymer matrix composites [J]. Composite Structures, 2019, 215: 377–384. DOI: 10.1016/j.compstruct.2019.02.016.
    [11]
    LI Z Y, GHOSH S. Micromechanics modeling and validation of thermal-mechanical damage in DER353 epoxy/borosilicate glass composite subject to high strain rate deformation [J]. International Journal of Impact Engineering, 2020, 136: 103414. DOI: 10.1016/j.ijimpeng.2019.103414.
    [12]
    刘永贵, 唐志平, 崔世堂. 冲击载荷下瞬态温度的实时测量方法 [J]. 爆炸与冲击, 2014, 34(4): 471–475. DOI: 10.11883/1001-1455(2014)04-0471-05.

    LIU Y G, TANG Z P, CUI S T. Real-time measuring methods for transient temperature under shock loading [J]. Explosion and Shock Waves, 2014, 34(4): 471–475. DOI: 10.11883/1001-1455(2014)04-0471-05.
    [13]
    刘永贵, 唐志平, 崔世堂. TiNi合金冲击相变过程中温度变化规律的实验研究 [J]. 爆炸与冲击, 2014, 34(6): 679–684. DOI: 10.11883/1001-1455(2014)06-0679-06.

    LIU Y G, TANG Z P, CUI S T. Experimental study on temperature evolution of TiNi alloy during shock-induced phase transformation [J]. Explosion and Shock Waves, 2014, 34(6): 679–684. DOI: 10.11883/1001-1455(2014)06-0679-06.
    [14]
    李涛, 傅华, 李克武, 等. 单轴压缩下2种PBX炸药的动态变形损伤及其温升效应 [J]. 爆炸与冲击, 2017, 37(1): 120–125. DOI: 10.11883/1001-1455(2017)01-0120-06.

    LI T, FU H, LI K W, et al. Deformation with damage and temperature-rise of two types of plastic-bonded explosives under uniaxial compression [J]. Explosion and Shock Waves, 2017, 37(1): 120–125. DOI: 10.11883/1001-1455(2017)01-0120-06.
    [15]
    李茜. 冲击载荷下复合材料的损伤模型适用性研究 [D]. 西安: 西北工业大学, 2018.

    LI X. Comparison of different damage models for laminated composites under impact loading [D]. Xi’an, Shaanxi, China: Northwestern Polytechnical University, 2018.
    [16]
    朱炜垚, 许希武. 含低速冲击损伤复合材料层合板剩余压缩强度及疲劳性能试验研究 [J]. 复合材料学报, 2012, 29(5): 171–178. DOI: 10.13801/j.cnki.fhclxb.2012.05.025.

    ZHU W Y, XU X W. Experiment research on residual compressive strength and fatigue performance of composite laminates with low velocity impact damage [J]. Acta Materiae Compositae Sinica, 2012, 29(5): 171–178. DOI: 10.13801/j.cnki.fhclxb.2012.05.025.
    [17]
    严实, 郭留雨, 赵金阳, 等. 三维五向编织复合材料低速冲击及冲击后压缩性能实验研究 [J]. 材料工程, 2017, 45(12): 65–70. DOI: 10.11868/j.issn.1001-4381.2015.000861.

    YAN S, GUO L Y, ZHAO J Y, et al. Experimental investigation on low-velocity impact and compression after impact properties of three-dimensional five-directional braided composites [J]. Journal of Materials Engineering, 2017, 45(12): 65–70. DOI: 10.11868/j.issn.1001-4381.2015.000861.
    [18]
    刘丽敏, 孙颖, 李涛涛, 等. 芳纶/炭混编三维编织复合材料冲击后压缩性能实验研究 [J]. 固体火箭技术, 2016, 39(6): 803–808. DOI: 10.7673/j.issn.1006-2793.2016.06.012.

    LIU L M, SUN Y, LI T T, et al. Experimental investigation on the compression properties of Kevlar/carbon hybrid 3D braided composites after impact [J]. Journal of Solid Rocket Technology, 2016, 39(6): 803–808. DOI: 10.7673/j.issn.1006-2793.2016.06.012.
    [19]
    MARSH G. Aero engines lose weight thanks to composites [J]. Reinforced Plastics, 2012, 56(6): 32–35. DOI: 10.1016/S0034-3617(12)70146-7.
    [20]
    MCGREGOR C, VAZIRI R, XIAO X R. Finite element modelling of the progressive crushing of braided composite tubes under axial impact [J]. International Journal of Impact Engineering, 2010, 37(6): 662–672. DOI: 10.1016/j.ijimpeng.2009.09.005.
    [21]
    ROBERTS G D, PEREIRA J M, REVILOCK D M, et al. Ballistic impact of braided composites with a soft projectile [J]. Journal of Aerospace Engineering, 2005, 18(1): 3–7. DOI: 10.1061/(ASCE)0893-1321(2005)18:1(3).
    [22]
    PEREIRA J M, ROBERTS G D, RUGGERI C R, et al. Experimental techniques for evaluating the effects of aging on impact and high strain rate properties of triaxial braided composite materials: NASA/TM-2010-216763 [R]. Austin: NASA, 2010.
    [23]
    LIU L L, XUAN H J, CHEN G T, et al. Ballistic impact testing and analysis of triaxial braided composite fan case material [J]. Advanced Materials Research, 2012, 535/356/537: 121–132. DOI: 10.4028/www.scientific.net/AMR.535-537.121.
    [24]
    CHENG J Y. Material modeling of strain rate dependent polymer and 2D triaxially braided composites [D]. Akron, Ohio, USA: University of Akron, 2006.
    [25]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 三维编织物及其树脂基复合材料压缩性能试验方法: GB/T 33614—2017 [S]. 北京: 质检出版社, 2017.
  • Cited by

    Periodical cited type(20)

    1. 党发宁,王宝生,李玉涛,任劼,方建银. 冲击速度及骨料率对混凝土动强度的影响研究. 西安建筑科技大学学报(自然科学版). 2024(01): 7-13+22 .
    2. 熊凌浩,周传波,蒋楠,王腾,蒙贤忠. 大断面隧道新浇二衬混凝土爆破振动控制安全阈值. 工程爆破. 2023(01): 1-9 .
    3. 庄金平,任凯,杨尊煌. 早龄期持续受荷对成熟混凝土梁受弯性能影响试验研究. 混凝土. 2023(11): 49-52+57 .
    4. 王亚强,李二宝,王骞,漆斌,汪熙,杨海涛. 爆破振动对混凝土初凝期强度影响规律及降震试验研究. 中国矿业. 2022(03): 124-130 .
    5. 潘长春. 基于爆破振动的新浇混凝土现行安全标准探讨. 科技创新与应用. 2021(08): 75-77+81 .
    6. 缪琪,赵章华,俞海杰,孙旭峰. 水厂新浇构筑物在基坑爆破时的抗裂性能研究. 山西建筑. 2021(20): 40-43 .
    7. 谢立栋,东兆星,姜慧,朱炯,齐燕军. 早龄期混凝土动强度应变率系数的统计方法. 兵工学报. 2021(S1): 159-166 .
    8. 陈秋南,贺泳超,邹根,李君杰,周相识,周光裕. 爆破施工对隧道二衬结构影响的试验研究. 铁道科学与工程学报. 2020(03): 676-681 .
    9. 杨小林,刘宝,吴礼报. 振动荷载作用下新浇混凝土损伤累积规律试验研究. 混凝土. 2020(09): 27-30+36 .
    10. 叶红宇,杨小林,卓越. 基于损伤累积的爆破振动主频衰减规律试验研究. 矿业研究与开发. 2019(04): 92-96 .
    11. 杨小林,李拴杰,褚怀保,姚智慧,杨杰,刘宝. 多次振动荷载作用下新浇混凝土超声波波速变化规律试验研究. 河南理工大学学报(自然科学版). 2018(03): 124-128 .
    12. 褚怀保,杨小林,叶红宇,梁为民,余永强,魏海霞. 隧道衬砌混凝土爆破损伤累积规律试验研究. 铁道学报. 2018(03): 132-136 .
    13. 褚怀保,吴礼报,杨小林. 振动荷载作用对新浇混凝土强度与耐久性影响试验研究. 硅酸盐通报. 2018(09): 2919-2923 .
    14. 褚怀保,杨小林,叶红宇,吴礼报. 新浇混凝土爆破振动损伤累积规律模拟试验研究. 煤炭学报. 2018(09): 2469-2475 .
    15. 张宏兵. 面向爆破应力波小净距隧道混凝土安全振动标准研究. 湖南交通科技. 2017(03): 180-184 .
    16. 潘慧敏,赵庆新,付军. 早龄期混凝土受扰性能研究进展. 硅酸盐通报. 2017(01): 64-70 .
    17. 褚怀保,吴礼报,杨小林,叶红宇,李栓杰,赵禹. 新浇混凝土爆破振动损伤累积机制试验研究. 中国安全科学学报. 2017(09): 69-73 .
    18. 吴帅峰,王戈,袁东凯,刘殿书. 爆破振动对新浇混凝土影响的试验研究. 振动与冲击. 2017(02): 39-44+88 .
    19. 戴思南,吴新霞,李广平. 结构尺寸与龄期对混凝土爆破振动响应的影响. 爆破. 2015(01): 131-134+150 .
    20. 罗福友,邱子华,周浩仓,潘昌义,罗福龙,杨康. 沟槽爆破参数优化及成本分析. 江西理工大学学报. 2015(03): 58-63 .

    Other cited types(12)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (408) PDF downloads(83) Cited by(32)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return