Citation: | REN Yeping, LIU Rui, CHEN Pengwan, GUO Yansong, HU Qiwen, GE Chao, WANG Haifu. A study of the response characteristics of Al/PTFE reactive materials under shock loading[J]. Explosion And Shock Waves, 2022, 42(6): 063103. doi: 10.11883/bzycj-2021-0397 |
[1] |
张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
|
[2] |
王海福, 刘宗伟, 俞为民, 等. 活性破片能量输出特性实验研究 [J]. 北京理工大学学报, 2009, 29(8): 663–666.
WANG H F, LIU Z W, YU W M, et al. Experimental investigation of energy release characteristics of reactive fragments [J]. Transactions of Beijing Institute of Technology, 2009, 29(8): 663–666.
|
[3] |
帅俊峰, 蒋建伟, 王树有, 等. 复合反应破片对钢靶侵彻的实验研究 [J]. 含能材料, 2009, 17(6): 722–725. DOI: 10.3969/j.issn.1006-9941.2009.06.019.
SHUAI J F, JIANG J W, WANG S Y, et al. Compound reactive fragment penetrating steel target [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 722–725. DOI: 10.3969/j.issn.1006-9941.2009.06.019.
|
[4] |
辛春亮, 史文卿, 张雷雷, 等. 活性药型罩聚能装药子弹对钢锭的毁伤效应研究 [C]//2014’(第六届)含能材料与钝感弹药技术学术研讨会论文集. 四川绵阳: 《含能材料》编辑部, 2014.
|
[5] |
汪德武, 任柯融, 江增荣, 等. 活性材料冲击释能行为研究进展 [J]. 爆炸与冲击, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.
WANG D W, REN K R, JIANG Z R, et al. Shock-induced energy release behaviors of reactive materials [J]. Explosion and Shock Waves, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.
|
[6] |
叶文君, 汪涛, 鱼银虎. 氟聚物基含能反应材料研究进展 [J]. 宇航材料工艺, 2022, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
YE W J, WANG T, YU Y H. Research progress of fluoropolymer-matrix energetic reactive materials [J]. Aerospace Materials & Technology, 2022, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
|
[7] |
KOCH E C. Metal-fluorocarbon based energetic materials [M]. Weinheim: Wiley-VCH, 2012.
|
[8] |
JOSHI V S. Process for making polytetrafluoroethylene-aluminum composite and product made: US 6547993B1 [P]. 2003-04-15.
|
[9] |
阳世清, 徐松林, 张彤. PTFE/Al反应材料制备工艺及性能 [J]. 国防科技大学学报, 2008, 30(6): 39–42; 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.
YANG S Q, XU S L, ZHANG T. Preparation and performance of PTEF/Al reactive materials [J]. Journal of National University of Defense Technology, 2008, 30(6): 39–42; 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.
|
[10] |
NIELSON D B, TANNER R L, LUND G K. High strength reactive materials: US20030096897A1 [P]. 2003-05-22.
|
[11] |
于钟深, 方向, 高振儒, 等. TiH2含量对Al/PTFE准静态压缩力学性能和反应特性的影响 [J]. 含能材料, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.
YU Z S, FANG X, GAO Z R, et al. Effect of TiH2 content on mechanical properties and reaction characteristics of Al/PTFE under quasi-static compression [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.
|
[12] |
FENG B, FANG X, WANG H F, et al. The effect of crystallinity on compressive properties of Al-PTFE [J]. Polymers, 2016, 8(10): 356. DOI: 10.3390/polym8100356.
|
[13] |
WANG L, LIU J X, LI S K, et al. Investigation on reaction energy, mechanical behavior and impact insensitivity of W-PTFE-Al composites with different W percentage [J]. Materials and Design, 2016, 92: 397–404. DOI: 10.1016/j.matdes.2015.12.045.
|
[14] |
GE C, YU Q B, ZHANG H, et al. On dynamic response and fracture-induced initiation characteristics of aluminum particle filled PTFE reactive material using hat-shaped specimens [J]. Materials and Design, 2020, 188: 108472. DOI: 10.1016/j.matdes.2020.108472.
|
[15] |
REN H L, LI W, NING J G, et al. The influence of initial defects on impact ignition of aluminum/polytetrafluoroethylene reactive material [J]. Advanced Engineering Materials, 2020, 22(3): 1900821. DOI: 10.1002/adem.201900821.
|
[16] |
WANG H F, ZHENG Y F, YU Q B, et al. Impact-induced initiation and energy release behavior of reactive materials [J]. Journal of Applied Physics, 2011, 110(7): 074904. DOI: 10.1063/1.3644974.
|
[17] |
ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
|
[18] |
XIONG W, ZHANG X F, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. DOI: 10.1016/j.jallcom.2015.07.004.
|
[19] |
WANG Y, JIANG W, ZHANG X F, et al. Energy release characteristics of impact-initiated energetic aluminum–magnesium mechanical alloy particles with nanometer-scale structure [J]. Thermochimica Acta, 2011, 512(1/2): 233–239. DOI: 10.1016/j.tca.2010.10.013.
|
[20] |
LI Y, JIANG C L, WANG Z C, et al. Experimental study on reaction characteristics of PTFE/Ti/W energetic materials under explosive loading [J]. Materials, 2016, 9(11): 936. DOI: 10.3390/ma9110936.
|
[21] |
LEE J H S, GOROSHIN S, YOSHINAKA A, et al. Attempts to initiate detonations in metal-sulphur mixtures [J]. AIP Conference Proceedings, 2000, 505(1): 775–778. DOI: 10.1063/1.1303587.
|
[22] |
GUR’EV D L, GORDOPOLOV Y A, BATSANOV S S, et al. Solid-state detonation in the zinc-sulfur system [J]. Applied Physics Letters, 2006, 88(2): 024102. DOI: 10.1063/1.2164411.
|
[23] |
DOLGOBORODOV A Y, MAKHOV M N, KOLBANEV I V, et al. Detonation in an aluminum-Teflon mixture [J]. Journal of Experimental and Theoretical Physics Letters, 2005, 81(7): 311–314. DOI: 10.1134/1.1944069.
|
[24] |
ZHANG X F, SHI A S, ZHANG J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression [J]. Journal of Applied Physics, 2012, 111(12): 123501. DOI: 10.1063/1.4729048.
|
[25] |
赵锋, 孙承纬, 卫玉章, 等. 梯恩梯/黑索今(35/65)炸药的反应速率函数 [J]. 爆炸与冲击, 1989, 9(4): 338–347.
ZHAO F, SUN C W, WEI Y Z, et al. Reaction rates of TNT/RDX(35/65) explosive [J]. Explosion and Shock Waves, 1989, 9(4): 338–347.
|
[26] |
LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. The Physics of Fluids, 1980, 23(12): 2362–2372. DOI: 10.1063/1.862940.
|
[27] |
李军宝, 李伟兵, 汪衡, 等. 爆炸载荷下铝粉与橡胶复合材料中的冲击波传播特性 [J]. 兵工学报, 2020, 41(10): 2001–2007. DOI: 10.3969/j.issn.1000-1093.2020.10.009.
LI J B, LI W B, WANG H, et al. Propagation properties of shock wave in aluminum powder/rubber composites under explosion loading [J]. Acta Armamentarii, 2020, 41(10): 2001–2007. DOI: 10.3969/j.issn.1000-1093.2020.10.009.
|
[28] |
李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003.
|
[29] |
许世昌. 双层含能药型罩射流成型机理及侵彻性能研究 [D]. 南京: 南京理工大学, 2015: 29.
XU S C. Study on jet forming mechanism and penetration performance of double layer liners comprised of reactive material [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2015: 29
|
[30] |
郭俊. 活性分段动能杆对混凝土靶的毁伤效应研究 [D]. 北京: 北京理工大学, 2016: 94.
GUO J. Damage of concrete target induced by reactive segmented kinetic rods [D]. Beijing, China: Beijing Institute of Technology, 2016: 94
|
[31] |
JIANG J W, WANG S Y, ZHANG M, et al. Modeling and simulation of JWL equation of state for reactive Al/PTFE mixture [J]. Journal of Beijing Institute of Technology, 2012, 21(2): 150–156. DOI: 10.15918/j.jbit1004-0579.2012.02.003.
|
[32] |
RAFTENBERG M N, MOCK W JR, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35(12): 1735–1744. DOI: 10.1016/j.ijimpeng.2008.07.041.
|
[1] | YANG Tianhao, CHONG Tao, LI Tao, FU Hua, HU Haibo. GPa-level slow-front ramp wave loading technology driven by non-shock initiation reaction[J]. Explosion And Shock Waves, 2023, 43(6): 064101. doi: 10.11883/bzycj-2022-0238 |
[2] | WANG Dewu, REN Kerong, JIANG Zengrong, ZHAO Hongwei, CHEN Rong, GUO Baoyue. Shock-induced energy release behaviors of reactive materials[J]. Explosion And Shock Waves, 2021, 41(3): 031408. doi: 10.11883/bzycj-2020-0337 |
[3] | HU Haibo, FU Hua, LI Tao, SHANG Hailin, WEN Shanggang. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement[J]. Explosion And Shock Waves, 2020, 40(1): 011401. doi: 10.11883/bzycj-2019-0346 |
[4] | HE Liling, ZHANG Fangju, YAN Yixia, XIE Ruoze, XU Aimin, ZHOU Yanliang. Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes[J]. Explosion And Shock Waves, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046 |
[5] | DING Tong, GUO Wencan, ZHANG Xu, WANG Zhongmiao, ZHENG Xianxu, LIU Cangli. Reaction properties of Al-teflon with different particle sizes under laser ablation[J]. Explosion And Shock Waves, 2019, 39(4): 041402. doi: 10.11883/bzycj-2019-0023 |
[6] | XIONG Wei, ZHANG Xianfeng, CHEN Yaxu, DING Li, BAO Kuo, CHEN Haihua. Mechanical properties and shock-induced chemical reaction behaviors of cold-rolled Al/Ni multi-layered composites[J]. Explosion And Shock Waves, 2019, 39(5): 055301. doi: 10.11883/bzycj-2017-0451 |
[7] | LIU Xuezhe, LIN Zhong, WANG Ruili, YU Yunlong. A constructed method of manufactured solutions and code verification for 2D Lagrangian radiation hydrodynamic equations[J]. Explosion And Shock Waves, 2019, 39(1): 014201. doi: 10.11883/bzycj-2017-0199 |
[8] | BAI Zhiling, DUAN Zhuoping, WEN Lijing, ZHANG Zhenyu, OU Zhuocheng, HUANG Fenglei. A multi-component Duan-Zhang-Kim mesoscopic reaction rate model for shock initiation of multi-component PBX explosives[J]. Explosion And Shock Waves, 2019, 39(11): 112101. doi: 10.11883/bzycj-2018-0410 |
[9] | DING Yuanyuan, ZHANG Zhen, LAI Huawei, WANG Yonggang. A Lagrangian inverse analysis technique for studying dynamic mechanical properites of brittle materials based on digital image correlation[J]. Explosion And Shock Waves, 2018, 38(6): 1310-1316. doi: 10.11883/bzycj-2018-0049 |
[10] | Wubuliaisan MAIMAITITUERSUN, GE Chao, TIAN Chao, DONG Yongxiang. Impact-induced initiation criteria of PTFE/Al by split Hopkinson pressure bar[J]. Explosion And Shock Waves, 2018, 38(5): 957-965. doi: 10.11883/bzycj-2017-0075 |
[11] | GE Chao, Wubuliaisan MAIMAITITUERSUN, TIAN Chao, DONG Yongxiang, SONG Qing. Impact-induced initiation thresholds of polytetrafluoroethylene/Al composite by gas gun[J]. Explosion And Shock Waves, 2018, 38(1): 1-8. doi: 10.11883/bzycj-2017-0030 |
[12] | Li Shunping, Feng Shunshan, Xue Zaiqing, Tu Jian. Mechanical properties of PTFE at high strain rate[J]. Explosion And Shock Waves, 2017, 37(6): 1046-1050. doi: 10.11883/1001-1455(2017)06-1046-05 |
[13] | Pei Hong-bo, Jiao Qing-jie, Qin Jian-feng. Reaction process of aluminized RDX-based explosives based on cylinder test[J]. Explosion And Shock Waves, 2014, 34(5): 636-640. doi: 10.11883/1001-1455(2014)05-0636-05 |
[14] | XU Song-lin, YANG Shi-qing, ZHANG Wei, LU Fang-yun. AconstitutiverelationforapressedPTFE/Alenergeticcompositematerial[J]. Explosion And Shock Waves, 2010, 30(4): 439-444. doi: 10.11883/1001-1455(2010)04-0439-06 |
[15] | ZHANG Xian-Feng, ZHAO Xiao-Ning, QIAO Liang. Theory analysis on shock-induced chemical reaction of reactive metal[J]. Explosion And Shock Waves, 2010, 30(2): 145-151. doi: 10.11883/1001-1455(2010)02-0145-07 |
[16] | DUAN Zhuo-ping, ZHU Yan-li, ZHANG Lian-sheng. DOP experimental study on EFP penetrating Al2O3 armor ceramic[J]. Explosion And Shock Waves, 2006, 26(6): 505-509. doi: 10.11883/1001-1455(2006)06-0505-05 |
1. | 张学瑞,周涛. 空爆条件下硼基燃料对Al/PTFE复合装药能量输出特性的影响. 爆破器材. 2024(02): 7-12+21 . ![]() | |
2. | 任思远,武强,张品亮,宋光明,陈川,龚自正,李正宇. 活性弹丸超高速撞击蜂窝夹芯板双层结构的损伤特性. 爆炸与冲击. 2024(07): 83-96 . ![]() | |
3. | 熊玮,张先锋,李逸,谈梦婷,刘闯,侯先苇. 活性材料冲击压缩及反应行为模拟方法研究进展. 北京理工大学学报. 2023(10): 995-1015 . ![]() | |
4. | 丁建,朱顺官. 氟聚物基活性材料释能及毁伤特性研究进展. 含能材料. 2023(08): 844-856 . ![]() | |
5. | 田伟玺,何源,王传婷,郭磊,周杰. 冲击载荷作用下Al/PTFE活性材料的非均相化学反应模型. 南京理工大学学报. 2022(06): 659-670 . ![]() |