Citation: | YANG Leifeng, CHANG Xinzhe, XU Fei, WANG Shuai, LIU Xiaochuan, XI Xulong, LI Xiaocheng. Study on the scaling law of geometrically-distorted thin-walled cylindrical shells subjected to axial impact[J]. Explosion And Shock Waves, 2022, 42(5): 053205. doi: 10.11883/bzycj-2021-0452 |
[1] |
JONES N. Structural impact [M]. 2nd ed. New York: Cambridge University Press, 2012.
|
[2] |
徐海斌, 张德志, 谭书舜, 等. 轴向压缩的金属薄壁圆管相似律的实验研究 [C] // 第20届全国结构工程学术会议论文集. 浙江宁波: 中国力学学会工程力学编辑部, 2011: 554–559.
|
[3] |
ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10–15. DOI: 10.1093/qjmam/13.1.10.
|
[4] |
ABRAMOWICZ W, JONES N. Dynamic axial crushing of circular tubes [J]. International Journal of Impact Engineering, 1984, 2(3): 263–281. DOI: 10.1016/0734-743X(84)90010-1.
|
[5] |
KARAGIOZOVA D, JONES N. Influence of stress waves on the dynamic progressive and dynamic plastic buckling of cylindrical shells [J]. International Journal of Solids and Structures, 2001, 38(38/39): 6723–6749. DOI: 10.1016/S0020-7683(01)00111-1.
|
[6] |
KARAGIOZOVA D, NURICK G N, YUEN S C K. Energy absorption of aluminium alloy circular and square tubes under an axial explosive load [J]. Thin-Walled Structures, 2005, 43(6): 956–982. DOI: 10.1016/j.tws.2004.11.002.
|
[7] |
LU G, YU J L, ZHANG J J, et al. Alexander revisited: upper- and lower-bound approaches for axial crushing of a circular tube [J]. International Journal of Mechanical Sciences, 2021, 206: 106610. DOI: 10.1016/j.ijmecsci.2021.106610.
|
[8] |
CASABURO A, PETRONE G, FRANCO F, et al. A review of similitude methods for structural engineering [J]. Applied Mechanics Reviews, 2019, 71(3): 030802. DOI: 10.1115/1.4043787.
|
[9] |
COUTINHO C P, BAPTISTA A J, RODRIGUES J D. Reduced scale models based on similitude theory: a review up to 2015 [J]. Engineering Structures, 2016, 119: 81–94. DOI: 10.1016/j.engstruct.2016.04.016.
|
[10] |
OSHIRO R E, ALVES M. Scaling impacted structures [J]. Archive of Applied Mechanics, 2004, 74(1/2): 130–145. DOI: 10.1007/BF02637214.
|
[11] |
OSHIRO R E, ALVES M. Scaling of cylindrical shells under axial impact [J]. International Journal of Impact Engineering, 2007, 34(1): 89–103. DOI: 10.1016/j.ijimpeng.2006.02.003.
|
[12] |
王帅, 徐绯, 代震, 等. 结构冲击畸变问题的直接相似方法研究 [J]. 力学学报, 2020, 52(3): 774–786. DOI: 10.6052/0459-1879-19-327.
WANG S, XU F, DAI Z, et al. A direct scaling method for the distortion problems of structural impact [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 774–786. DOI: 10.6052/0459-1879-19-327.
|
[13] |
WANG S, XU F, ZHANG X Y, et al. Material similarity of scaled models [J]. International Journal of Impact Engineering, 2021, 156: 103951. DOI: 10.1016/j.ijimpeng.2021.103951.
|
[14] |
李肖成, 徐绯, 杨磊峰, 等. 薄板在冲击载荷下线弹性理想塑性响应的相似性研究 [J]. 爆炸与冲击, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.
LI X C, XU F, YANG L F, et al. Study on the similarity of elasticity and ideal plasticity response of thin plate under impact loading [J]. Explosion and Shock Waves, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.
|
[15] |
秦健, 张振华. 原型和模型不同材料时加筋板冲击动态响应的相似预报方法 [J]. 爆炸与冲击, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.
QIN J, ZHANG Z H. A scaling method for predicting dynamic responses of stiffened plates made of materials different from experimental models [J]. Explosion and Shock Waves, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.
|
[16] |
ALVES M, OSHIRO R E, CALLE M A G, et al. Scaling and structural impact [J]. Procedia Engineering, 2017, 173: 391–396. DOI: 10.1016/j.proeng.2016.12.036.
|
[17] |
MAZZARIOL L M, ALVES M. Similarity laws of structures under impact load: geometric and material distortion [J]. International Journal of Mechanical Sciences, 2019, 157/158: 633–647. DOI: 10.1016/j.ijmecsci.2019.05.011.
|
[18] |
WANG S, XU F, DAI Z. Suggestion of the DLV dimensionless number system to represent the scaled behavior of structures under impact loads [J]. Archive of Applied Mechanics, 2020, 90(4): 707–719. DOI: 10.1007/s00419-019-01635-9.
|
[19] |
WANG S, XU F, ZHANG X Y, et al. A directional framework of similarity laws for geometrically distorted structures subjected to impact loads [J]. International Journal of Impact Engineering, 2022, 161: 104092. DOI: 10.1016/j.ijimpeng.2021.104092.
|
[20] |
李志斌, 虞吉林, 郑志军, 等. 薄壁管及其泡沫金属填充结构耐撞性的实验研究 [J]. 实验力学, 2012, 27(1): 77–86.
LI Z B, YU J L, ZHENG Z J, et al. An experimental study on the crashworthiness of thin-walled tubes and their metallic foam-filled structures [J]. Journal of Experimental Mechanics, 2012, 27(1): 77–86.
|
[21] |
朱文波, 杨黎明, 余同希. 薄壁圆管轴向冲击下的动态特性研究 [J]. 宁波大学学报(理工版), 2014, 27(2): 92–96.
ZHU W B, YANG L M, YU T X. Study on dynamic properties of thin-walled circular tubes under axial compression [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2014, 27(2): 92–96.
|
[22] |
余同希, 卢国兴, 张雄. 能量吸收: 结构与材料的力学行为和塑性分析 [M]. 北京: 科学出版社, 2019.
|
[23] |
白以龙, 黄筑平, 虞吉林, 等. 材料和结构的动态响应 [M]. 合肥: 中国科学技术大学出版社, 2005.
|
[24] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C] // Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands, 1983: 541–547.
|
[1] | CHEN Nengxiang, ZHONG Wei, WANG Shufei, YANG Shanglin, TIAN Zhou, OU Xiang, HUANG Huaiwei, YAO Xiaohu. Study on geometric similarity law of steel frame under a far-field explosion load[J]. Explosion And Shock Waves, 2023, 43(1): 013101. doi: 10.11883/bzycj-2021-0498 |
[2] | NIU Huanhuan, YAN Xiaopeng, LUO Haoshun, CHEN Jiajun, LI Zhiqiang. Mechanical response of sapphire transparent ceramic glass at different strain rates[J]. Explosion And Shock Waves, 2022, 42(7): 073105. doi: 10.11883/bzycj-2021-0434 |
[3] | LIU Feng, LI Qingming. Stain-rate effects on the dynamic compressive strength of concrete-like materials under multiple stress state[J]. Explosion And Shock Waves, 2022, 42(9): 091408. doi: 10.11883/bzycj-2022-0037 |
[4] | YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114 |
[5] | MA Yan, YUAN Fuping, WU Xiaolei. Dynamic shear behaviors and microstructural deformation mechanisms in FeNiAlC dual-phase high strength alloy[J]. Explosion And Shock Waves, 2021, 41(1): 011404. doi: 10.11883/bzycj-2020-0224 |
[6] | DONG Kai, REN Huiqi, RUAN Wenjun, NING Huijun, GUO Ruiqi, HUANG Kui. Study on strain rate effect of coral sand[J]. Explosion And Shock Waves, 2020, 40(9): 093102. doi: 10.11883/bzycj-2019-0432 |
[7] | WEN Zhu, QIU Yanyu, ZI Min, ZHAO Zhangyong, WANG Mingyang. Experimental study on quasi-one-dimensional strain compression of calcareous sand[J]. Explosion And Shock Waves, 2019, 39(3): 033101. doi: 10.11883/bzycj-2018-0015 |
[8] | HU Liangliang, HUANG Ruiyuan, GAO Guangfa, JIANG Dong, LI Yongchi. A novel method for determining strain rate of concrete-like materials in SHPB experiment[J]. Explosion And Shock Waves, 2019, 39(6): 063102. doi: 10.11883/bzycj-2018-0142 |
[9] | WANG Zhen, ZHANG Chao, WANG Yinmao, WANG Xiang, SUO Tao. Mechanical behaviours of aeronautical inorganic glass at different strain rates[J]. Explosion And Shock Waves, 2018, 38(2): 295-301. doi: 10.11883/bzycj-2016-0186 |
[10] | Xi Xulong, Bai Chunyu, Liu Xiaochuan, Mu Rangke, Wang Jizhen. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates[J]. Explosion And Shock Waves, 2017, 37(5): 871-878. doi: 10.11883/1001-1455(2017)05-0871-08 |
[11] | Luo Xin, Xu Jin-yu, Bai Er-lei, Li Wei-min. Comparative study of the effect of the type of alkali on the strain rate effect of geopolymer concrete[J]. Explosion And Shock Waves, 2014, 34(3): 340-346. doi: 10.11883/1001-1455(2014)03-0340-07 |
[12] | Tan Li-hui, Xu Tao, Cui Xiao-mei, Zhang Wei, Zhao Shi-jia. Design optimization for crashworthiness of metal thin-walled cylinders with circular arc indentations[J]. Explosion And Shock Waves, 2014, 34(5): 547-553. doi: 10.11883/1001-1455(2014)05-0547-07 |
[13] | XIE Zhong-you, YU Ji-lin, ZHENG Zhi-jun. Bendingbehaviorofthin-walledcylindricaltubesfilledwithmetallicfoam underlow-velocityimpac[J]. Explosion And Shock Waves, 2012, 32(2): 169-173. doi: 10.11883/1001-1455(2012)02-0169-05 |
[14] | XI Feng, ZHANG Yun. Theeffectsofstrainrateonthedynamicresponseandabnormalbehavior ofsteelbeamsunderpulseloading[J]. Explosion And Shock Waves, 2012, 32(1): 34-42. doi: 10.11883/1001-1455(2012)01-0034-09 |
[15] | SHEN Yan-ming, CHEN Jian-qiang. Numericallysimulatingverificationofthecomparabilityrule onhypervelocityimpact[J]. Explosion And Shock Waves, 2011, 31(4): 343-348. doi: 10.11883/1001-1455(2011)04-0343-06 |
[16] | YIN Zhi-ping, LI Yu-long, HUANG Qi-qing. Optimalcrashworthinessdesignofthin-walledcirculartubes withtriggeringholes[J]. Explosion And Shock Waves, 2011, 31(4): 418-422. doi: 10.11883/1001-1455(2011)04-0418-05 |
[17] | YAN Cheng, OU Zhuo-cheng, DUAN Zhuo-ping, HUANG Feng-lei. Strain-rateeffectsondynamicstrengthofbrittlematerials[J]. Explosion And Shock Waves, 2011, 31(4): 423-427. doi: 10.11883/1001-1455(2011)04-0423-05 |
[18] | QIN Jian, ZHANG Zhen-hua. Ascalingmethodforpredictingdynamicresponsesofstiffenedplates madeofmaterialsdifferentfromexperimentalmodels[J]. Explosion And Shock Waves, 2010, 30(5): 511-516. doi: 10.11883/1001-1455(2010)05-0511-06 |
[19] | TANG Tie-gang, LI Qing-zhong, SUN Xue-lin, SUN Zhan-feng, JIN Shan, GU Yan. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation[J]. Explosion And Shock Waves, 2006, 26(2): 129-133. doi: 10.11883/1001-1455(2006)02-0129-05 |
[20] | LI Yu-long, SUO Tao, GUO Wei-guo, HU Rui, LI Jin-shan, FU Heng-zhi. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J]. Explosion And Shock Waves, 2005, 25(6): 487-492. doi: 10.11883/1001-1455(2005)06-0487-06 |