Volume 42 Issue 8
Sep.  2022
Turn off MathJax
Article Contents
ZHANG Shiwen, JIN Shan, CHEN Yan, GUO Zhaoliang, DAN Jiakun, LIU Mingtao, TANG Tiegang. Influence of a cushion on dynamic expansion and fracture of an explosively-driven metallic cylinder[J]. Explosion And Shock Waves, 2022, 42(8): 083102. doi: 10.11883/bzycj-2021-0456
Citation: ZHANG Shiwen, JIN Shan, CHEN Yan, GUO Zhaoliang, DAN Jiakun, LIU Mingtao, TANG Tiegang. Influence of a cushion on dynamic expansion and fracture of an explosively-driven metallic cylinder[J]. Explosion And Shock Waves, 2022, 42(8): 083102. doi: 10.11883/bzycj-2021-0456

Influence of a cushion on dynamic expansion and fracture of an explosively-driven metallic cylinder

doi: 10.11883/bzycj-2021-0456
  • Received Date: 2021-11-04
  • Rev Recd Date: 2022-03-15
  • Available Online: 2022-03-29
  • Publish Date: 2022-09-09
  • The influence of assembly cushions on the fracture of an expanding metal cylindrical shell was studied. The velocity of the outer surface of the shell with or without a cushion in it was measured by a Doppler pins system (DPS) array, and images with the obvious influence of an inner cushion on the fracture of the shell were recorded by the high-speed photography. Compared with the area without the cushion, the outer surface of the cylindrical shell in the cushion area experienced a process of first convex and then concave movement, which made the radial displacement of the surface repeatedly misplace, leading to a final displacement of 0.34 mm lower. This displacement difference may lead to the radial shear fracture of the cylindrical shell. Besides, in the experiment, a crack appeared on both sides of the cushion/gap interface (7.5° deviation on the cushion side and 9° deviation on the gap side). These cracks were resulted from the disturbance of two sparse stress waves, which were generated from the cushion/gap interface and then transmitted to the outer surface of the cylindrical shell. The fracture mode is different from both circumferential tensile fracture and shear fracture along 45° direction. This new fracture mode is closely related to the dynamic mechanical properties of the cylindrical shell’s material. Further numerical simulation analysis shows that the influence of the assembly cushion on the fracture mechanism of the cylindrical shell includes three aspects: firstly, the additional mass effect; secondly, the amplitude change of the explosive impact loading after it passing through the cushion, and the asynchronous difference of the impact loading sequence with other parts; and thirdly, the influence of the propagation of surface waves, which originate from the interface between the cushion and the gap, on the subsequent development behavior of the cylindrical fracture mode .
  • loading
  • [1]
    MOTT N F. Fragmentation of rings and shells: a theory of the fragmentation of shells and bombs [M]. Berlin, Germany: Springer Press, 2006: 243−294.
    [2]
    MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042.
    [3]
    GRADY D. Investigation of explosively driven fragmentation of metals: two-dimensional fracture and fragmentation of metal shells [R]. Livermore, USA: Lawrence Livermore National Laboratory, 2003.
    [4]
    GURNEY R W. The initial velocities of fragments from bombs, shells and grenades [R]. Aberdeen, UK: Ballistic Research Laboratory, 1943.
    [5]
    HIROE T, FUJIWARA K, HATA H, et al. Explosively driven expansion and fragmentation behavior for cylinders, spheres and rings of 304 stainless steel [J]. Materials Science Forum, 2010, 638: 1035–1040.
    [6]
    HIROE T, FUJIWARA K, HATA H, et al. Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations [J]. International Journal of Impact Engineering, 2008, 35(12): 1578–1586. DOI: 10.1016/j.ijimpeng.2008.07.002.
    [7]
    禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究 [J]. 兵工学报, 2019, 40(7): 1418–1424. DOI: 10.3969/j.issn.1000-1093.2019.07.011.

    YU F Y, DONG X L, YU X L, et al. Fracture characteristics of metal cylinder shells with different charges [J]. Acta Armamentarii, 2019, 40(7): 1418–1424. DOI: 10.3969/j.issn.1000-1093.2019.07.011.
    [8]
    汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. DOI: 10.11883/1001-1455(2006)02-0129-05.
    [9]
    胡八一, 董庆东, 韩长生, 等. TC4钛合金自然破片的引燃机理分析 [J]. 爆炸与冲击, 1995, 15(3): 254–258.

    HU B Y, DONG Q D, HAN C S, et al. Analysis of the firing mechanics for TI-6AL-4V natural fragments [J]. Explosion and Shock Waves, 1995, 15(3): 254–258.
    [10]
    沈飞, 王辉, 屈可朋, 等. 不同晶粒度无氧铜管在爆轰加载下的膨胀及断裂特性 [J]. 爆炸与冲击, 2020, 40(2): 022201. DOI: 10.11883/bzycj-2019-0063.

    SHEN F, WANG H, QU K P, et al. Expansion and fracture characteristics of oxygen-free copper tubes with different grain sizes under detonation loading [J]. Explosion and Shock Waves, 2020, 40(2): 022201. DOI: 10.11883/bzycj-2019-0063.
    [11]
    汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533.

    TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533.
    [12]
    胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象 [J]. 爆炸与冲击, 2004, 24(2): 97–107.

    HU H B, TANG T G, HU B Y, et al. A study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells [J]. Explosion and Shock Waves, 2004, 24(2): 97–107.
    [13]
    金山, 张世文, 龙建华. 缺陷对圆管膨胀断裂影响的实验研究 [J]. 高压物理学报, 2011, 25(2): 188–192. DOI: 10.11858/gywlxb.2011.02.017.

    JIN S, ZHANG S W, LONG J H. Experimental study on the influences of defects on expanding fracture of a metal cylinder [J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 188–192. DOI: 10.11858/gywlxb.2011.02.017.
    [14]
    LIU M T, GUO Z L, FAN C, et al. Modeling spontaneous shear bands evolution in thick-walled cylinders subjected to external high-strain-rate loading [J]. International Journal of Solids and Structures, 2016, 97: 336–354. DOI: 10.1016/j.ijsolstr.2016.07.014.
    [15]
    李涛, 刘明涛, 王晓燕, 等. 装配垫层与间隙对爆轰加载下金属飞片运动特征的影响 [J]. 高压物理学报, 2018, 32(4): 044202. DOI: 10.11858/gywlxb.20170576.

    LI T, LIU M T, WANG X Y, et al. Effects of explosive device with foam cushion and air clearance on kinetic characteristic of steel flyer under detonation loading [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044202. DOI: 10.11858/gywlxb.20170576.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (399) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return