Citation: | LI Gan, CHEN Xiaowei. A compressible model of radial crater growth by shaped-charge jet penetration[J]. Explosion And Shock Waves, 2022, 42(7): 073301. doi: 10.11883/bzycj-2021-0466 |
[1] |
SONG W J, CHEN X W, CHEN P. Effect of compressibility on the hypervelocity penetration [J]. Acta Mechanica Sinica, 2018, 34(1): 82–98. DOI: 10.1007/s10409-017-0688-1.
|
[2] |
BIRKHOFF G, MACDOUGALL D P, PUGH E M, et al. Explosives with lined cavities [J]. Journal of Applied Physics, 1948, 19(6): 563–582. DOI: 10.1063/1.1698173.
|
[3] |
EICHELBERGER R J. Experimental test of the theory of penetration by metallic jets [J]. Journal of Applied Physics, 1956, 27(1): 63–68. DOI: 10.1063/1.1722198.
|
[4] |
ALLISON F E, VITALI R. A new method of computing penetration variables for shaped-charge jets: BRL Report No. 1184 [R]. Aberdeen Proving Ground, USA: Ballistic Research Laboratories, 1963.
|
[5] |
HAUGSTAD B S. Compressibility effects in shaped charge jet penetration [J]. Journal of Applied Physics, 1981, 52(3): 1243–1246. DOI: 10.1063/1.329745.
|
[6] |
HAUGSTAD B S, DULLUM O S. Finite compressibility in shaped charge jet and long rod penetration: the effect of shocks [J]. Journal of Applied Physics, 1981, 52(8): 5066–5071. DOI: 10.1063/1.329450.
|
[7] |
FLIS W J, CHOU P C. Penetration of compressible materials by shaped-charge jets [C]//Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands: International Ballistics Society, 1983: 617–625.
|
[8] |
FLIS W J. A model of compressible jet penetration [C]//Proceedings of the 26th International Symposium on Ballistics. Miami, Florida, USA: International Ballistics Society, 2011: 1124–1132.
|
[9] |
SONG W J, CHEN X W, CHEN P. A simplified approximate model of compressible hypervelocity penetration [J]. Acta Mechanica Sinica, 2018, 35(5): 910–924. DOI: 10.1007/s10409-018-0769-9.
|
[10] |
SZENDREI T. Analytical model for crater formation by jet impact and its application on penetration curves and profiles [C]//Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands: International Ballistics Society, 1983: 575–583.
|
[11] |
HELD M, JIANG D C M, CHANG C C, et al. Crater-growing process in water by shaped-charge perforation [C]//Proceedings of the SPIE 2513, 21st International Congress on High-Speed Photography and Photonics. Taejon, Korea: International Society for Optical Engineering, 1995: 1017–1027. DOI: 10.1117/12.209562.
|
[12] |
HELD M. Verification of the equation for radial crater growth by shaped charge jet penetration [J]. International Journal of Impact Engineering, 1995, 17(1/2/3): 387–398. DOI: 10.1016/0734-743X(95)99864-N.
|
[13] |
HELD M, HUANG N S, JIANG D, et al. Determination of the crater radius as a function of time of a shaped charge jet that penetrates water [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(2): 64–69. DOI: 10.1002/prep.19960210203.
|
[14] |
肖强强, 黄正祥, 顾晓辉. 冲击波影响下的聚能射流侵彻扩孔方程 [J]. 高压物理学报, 2011, 25(4): 333–338. DOI: 10.11858/gywlxb.2011.04.008.
XIAO Q Q, HUANG Z X, GU X H. Equation of penetration and crater growth by shaped charge jet under the influence of shock wave [J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 333–338. DOI: 10.11858/gywlxb.2011.04.008.
|
[15] |
GUO M, ZU X D, SHEN X J, et al. Study on liquid-filled structure target with shaped charge vertical penetration [J]. Defence Technology, 2019, 15(6): 861–867. DOI: 10.1016/j.dt.2019.05.003.
|
[16] |
ZU X D, HUANG Z X, GUAN Z W, et al. Influence of a liquid-filled compartment structure on the incoming shaped charge jet stability [J]. Defence Technology, 2021, 17(2): 571–582. DOI: 10.1016/j.dt.2020.03.009.
|
[17] |
LI G, CHEN X W, SONG W J. Compressible models of shaped charge jet in water [J]. Mechanics of Solids, in press, 2022. DOI: 10.3103/S0025654422040112.
|
[18] |
MEYERS M A. Dynamic behavior of materials [M]. New York, USA: Wiley, 1994.
|
[19] |
FLIS W J. A simplified approximate model of compressible jet penetration [C]//Proceedings of the 27th International Symposium on Ballistics. Freiburg, Germany: International Ballistics Society, 2013: 1252–1263.
|
[20] |
HELD M, KOZHUSHKO A A. Radial crater growing process in different materials with shaped charge jets [J]. Propellants, Explosives, Pyrotechnics, 1999, 24(6): 339–342. DOI: 10.1002/(SICI)1521-4087(199912)24:6<339::AID-PREP339>3.0.CO;2-5.
|
1. | 陈丁,黄文雄,黄丹. 光滑粒子法中的摩擦接触算法及其在含界面土体变形问题中的应用. 岩土力学. 2024(03): 885-894 . ![]() | |
2. | 叶纪元,杨扬,徐绯,王逸韬,何宇廷. 基于自适应FEM-SPH耦合算法的飞机典型部位破片冲击战伤的数值研究. 爆炸与冲击. 2024(06): 134-145 . ![]() | |
3. | 廖祜明,黎波,樊江,焦立新,于帅超,林健宇,裴晓阳. 超高速撞击下碎片云的OTM分析. 爆炸与冲击. 2022(10): 50-60 . ![]() | |
4. | 樊江,袁圆,廖祜明,袁庆浩,陈高翔,黎波. 基于最优运输无网格法的Whipple屏超高速撞击数值模拟. 爆炸与冲击. 2020(07): 97-107 . ![]() | |
5. | 朱留宪,孙勇,张永盛,武友德,冯颖珊. 基于SPH方法的钛合金切削仿真分析. 机械研究与应用. 2020(04): 1-3 . ![]() | |
6. | 强洪夫,孙新亚,王广,黄拳章. 钢箱内部爆炸破坏的SPH数值模拟. 爆炸与冲击. 2019(05): 24-32 . ![]() | |
7. | 牛伟龙,莫蓉,孙惠斌,韩周鹏. 基于光滑粒子流体动力学方法与TANH本构方程的钛合金切屑形态预测. 上海交通大学学报. 2019(05): 624-632 . ![]() | |
8. | 王小峰,陶钢,闻鹏,任保祥,庞春桥. SPH方法在超高速撞击问题中的应用研究. 兵器装备工程学报. 2019(09): 7-11+54 . ![]() |