Volume 43 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHANG Baoyong, CUI Jiarui, TAO Jin, WANG Yajun, QIN Yifeng, WEI Chunrong, ZHANG Yingxin. Experimental study on barrier performances of foamed metals with different blast front structures to prevent methane explosion propagation[J]. Explosion And Shock Waves, 2023, 43(2): 025402. doi: 10.11883/bzycj-2021-0531
Citation: ZHANG Baoyong, CUI Jiarui, TAO Jin, WANG Yajun, QIN Yifeng, WEI Chunrong, ZHANG Yingxin. Experimental study on barrier performances of foamed metals with different blast front structures to prevent methane explosion propagation[J]. Explosion And Shock Waves, 2023, 43(2): 025402. doi: 10.11883/bzycj-2021-0531

Experimental study on barrier performances of foamed metals with different blast front structures to prevent methane explosion propagation

doi: 10.11883/bzycj-2021-0531
  • Received Date: 2021-12-27
  • Rev Recd Date: 2022-08-06
  • Available Online: 2023-02-14
  • Publish Date: 2023-02-25
  • The shock waves and flame produced by explosions of methane (CH4) and other combustible gas explosion can cause huge casualties and property damage. Therefore, the explosion-proof isolating technologies have always been a hotspot in the fields of industrial explosion protection. Foamed metal has attracted attention as a new type of explosion-isolating material which can simultaneously block the propagation of gas explosion shock waves and flame waves. Its explosion-isolating performance is a key factor affecting its application. However, there are few researches on improving the explosion-isolating performances of materials by changing the overall structures of foamed metals. A new method was proposed to change the structure of the blast front of a foamed metal and increase the contact area of the blast front with the explosion flame, so as to improve the flame-proof performance of the foamed metal. In this experiment, the experimental material with the thickness of 20 mm was prepared by wire cutting. Under the premise of the foundation thickness of 15 mm, the explosive effect surface was prepared into serrated ripples with the thickness of 5 mm and the angles of 30°, 60° and 90°. The processed foamed metal materials with different explosive effect surfaces were installed in the diffusion pipe near the end of the experimental equipment. The sensors placed at different positions and with different distances were used to collect the relevant data, and thereby the attenuation ratios of explosion overpressure, flame propagation velocity and flame temperature were calculated. The explosion-proof performances of the foamed metal with different saw tooth angles were evaluated by combining the explosion-extinguishing parameters. The results show that under the premise of the same thickness, the increase of a certain zigzag wave on the explosive effect surface of the material will improve the overall isolating explosion performance. The attenuation ratios of explosion overpressure, flame velocity, and flame temperature increase with the decrease of the sawtooth angle. When the front surface of the foamed metal has a sawtooth of 30°, the attenuation ratios of explosion overpressure, flame velocity, and flame temperature are 74.0%, 76.18%, and 91.93%, respectively. The explosion overpressure decay rate is 30.76 MPa/s, and the explosion is extinguished at the rear end of the material. The quenching parameter at the rear-end of the material is 17.68 MPa·℃, and the isolating explosion effect is better.
  • loading
  • [1]
    汪腾蛟, 周西华, 白刚, 等. 煤矿火灾诱发瓦斯爆炸危险性预测 [J]. 煤炭学报, 2020, 45(12): 4104–4110. DOI: 10.13225/j.cnki.jccs.2019.1389.

    WANG T J, ZHOU X H, BAI G, et al. Hazard prediction of gas explosion induced by coal mine fire [J]. Journal of China Coal Society, 2020, 45(12): 4104–4110. DOI: 10.13225/j.cnki.jccs.2019.1389.
    [2]
    王秋红, 王二飞, 陈晓坤, 等. 管道内瓦斯爆炸火焰传播压力与温度特性 [J]. 中南大学学报(自然科学版), 2020, 51(1): 239–247. DOI: 10.11817/j.issn.1672-7207.2020.01.027.

    WANG Q H, WANG E F, CHEN X K, et al. Pressure and temperature characteristics of flame propagation of gas explosion in pipeline [J]. Journal of Central South University (Science and Technology), 2020, 51(1): 239–247. DOI: 10.11817/j.issn.1672-7207.2020.01.027.
    [3]
    李润之. 瓦斯煤尘共存条件下的煤尘云爆炸下限 [J]. 爆炸与冲击, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.

    LI R Z. Minimum explosive concentration of coal dust cloud in the coexistence of gas and coal dust [J]. Explosion and Shock Waves, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.
    [4]
    余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.

    YU M G, YANG X F, ZHENG K, et al. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
    [5]
    秦毅, 陈小伟, 黄维. 密闭空间可燃气体爆炸超压预测 [J]. 爆炸与冲击, 2020, 40(3): 032202. DOI: 10.11883/bzycj-2019-0175.

    QIN Y, CHEN X W, HUANG W. Overpressure prediction of combustible gas explosion in confined space [J]. Explosion and Shock Waves, 2020, 40(3): 032202. DOI: 10.11883/bzycj-2019-0175.
    [6]
    时本军, 穆朝民, 马海峰, 等. 腔体影响全巷道甲烷爆炸冲击波传播的特性 [J]. 煤炭学报, 2020, 45(S2): 841–849. DOI: 10.13225/j.cnki.jccs.2020.0791.

    SHI B J, MU C M, MA H F, et al. Cavity effect on the characteristics of methane blast wave propagation in the whole roadway [J]. Journal of China Coal Society, 2020, 45(S2): 841–849. DOI: 10.13225/j.cnki.jccs.2020.0791.
    [7]
    薛少谦, 黄子超, 杜宇婷, 等. 基于爆炸强度与隔爆屏障作用技术的巷道隔爆实验 [J]. 煤炭学报, 2021, 46(6): 1791–1798. DOI: 10.13225/j.cnki.jccs.HZ21.0438.

    XUE S Q, HUANG Z C, DU Y T, et al. Roadway explosion isolation technology based on explosion intensity and flame-proof barrier [J]. Journal of China Coal Society, 2021, 46(6): 1791–1798. DOI: 10.13225/j.cnki.jccs.HZ21.0438.
    [8]
    尹德军, 郑坚, 熊超, 等. 基于弹丸爆炸毁伤效应的复合材料与结构研究进展 [J]. 材料导报, 2018, 32(5): 815–821,827. DOI: 10.11896/j.issn.1005-023X.2018.05.018.

    YIN D J, ZHENG J, XIONG C, et al. Research progress on composite materials and structures used for protection against damage effect of projectile explosion [J]. Materials Review, 2018, 32(5): 815–821,827. DOI: 10.11896/j.issn.1005-023X.2018.05.018.
    [9]
    张博一, 高金涛, 王理, 等. 粉煤灰空心球/Al复合泡沫材料准静态力学性能及本构模型 [J]. 复合材料学报, 2021, 38(8): 2655–2665. DOI: 10.13801/j.cnki.fhclxb.20201116.003.

    ZHANG B Y, GAO J T, WANG L, et al. Quasi-static mechanical properties and constitutive model of fly ash cenosphere/aluminum syntactic foam [J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2655–2665. DOI: 10.13801/j.cnki.fhclxb.20201116.003.
    [10]
    王建忠, 许忠国, 敖庆波, 等. 金属纤维多孔材料力学性能研究现状 [J]. 稀有金属材料与工程, 2016, 45(6): 1636–1640.

    WANG J Z, XU Z G, AO Q B, et al. Status quo of mechanical properties of porous metal fibrous materials [J]. Rare Metal Materials and Engineering, 2016, 45(6): 1636–1640.
    [11]
    贾海林, 项海军, 李第辉, 等. 含NaCl超细水雾对不同阻塞率管道内爆炸的抑制 [J]. 爆炸与冲击, 2020, 40(4): 042201. DOI: 10.11883/bzycj-2019-0268.

    JIA H L, XIANG H J, LI D H, et al. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride [J]. Explosion and Shock Waves, 2020, 40(4): 042201. DOI: 10.11883/bzycj-2019-0268.
    [12]
    NIE B S, HU S T, YANG L L, et al. Characteristics of flame velocity of gas explosion with obstruction in pipeline [J]. Perspectives in Science, 2016, 7: 277–281. DOI: 10.1016/j.pisc.2015.12.003.
    [13]
    程方明, 常助川, 史合, 等. 多孔障碍物对预混火焰传播的影响 [J]. 爆炸与冲击, 2020, 40(8): 082103. DOI: 10.11883/bzycj-2019-0480.

    CHENG F M, CHANG Z C, SHI H, et al. Multi-hole obstacles’ effects on premixed flame’s propagation [J]. Explosion and Shock Waves, 2020, 40(8): 082103. DOI: 10.11883/bzycj-2019-0480.
    [14]
    DUAN Y L, WANG S, YANG Y L, et al. Experimental study on methane explosion characteristics with different types of porous media [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104370. DOI: 10.1016/j.jlp.2020.104370.
    [15]
    BIVOL G, GOLOVASTOV S. Effects of polyurethane foam on the detonation propagation in stoichiometric hydrogen-air mixture [J]. Process Safety and Environmental Protection, 2019, 130: 14–21. DOI: 10.1016/j.psep.2019.06.032.
    [16]
    OUSJI H, BELKASSEM B, LOUAR M A, et al. Air-blast response of sacrificial cladding using low density foams: experimental and analytical approach [J]. International Journal of Mechanical Sciences, 2017, 128/129: 459–474. DOI: 10.1016/j.ijmecsci.2017.05.024.
    [17]
    周尚勇, 高建村, 胡守涛, 等. 金属丝状材料对预混气体爆炸影响规律研究 [J]. 北京石油化工学院学报, 2019, 27(2): 62–65,76. DOI: 10.12053/j.issn.1008-2565.2019.02.011.

    ZHOU S Y, GAO J C, HU S T, et al. Study of the effect of metal filamentary materials on premixed gas explosion [J]. Journal of Beijing Institute of Petrochemical Technology, 2019, 27(2): 62–65,76. DOI: 10.12053/j.issn.1008-2565.2019.02.011.
    [18]
    王曦浩, 夏志成, 孔新立, 等. 钢板夹泡沫铝组合板抗接触爆炸性能研究 [J]. 振动与冲击, 2017, 36(13): 86–91. DOI: 10.13465/j.cnki.jvs.2017.13.013.

    WANG X H, XIA Z C, KONG X L, et al. Anti-contact blast performance of steel-aluminum foam-steel sandwich panels [J]. Journal of Vibration and Shock, 2017, 36(13): 86–91. DOI: 10.13465/j.cnki.jvs.2017.13.013.
    [19]
    张健, 赵桂平, 卢天健. 泡沫金属在冲击载荷下的动态压缩行为 [J]. 爆炸与冲击, 2014, 34(3): 278–284. DOI: 10.11883/1001-1455(2014)03-0278-07.

    ZHANG J, ZHAO G P, LU T J. High speed compression behaviour of metallic cellular materials under impact loading [J]. Explosion and Shock Waves, 2014, 34(3): 278–284. DOI: 10.11883/1001-1455(2014)03-0278-07.
    [20]
    孙建华, 曲征, 魏春荣, 等. 泡沫金属抑制瓦斯爆炸火焰的实验及机理研究 [J]. 采矿与安全工程学报, 2013, 30(3): 463–467.

    SUN J H, QU Z, WEI C R, et al. Experimental and mechanism study on gas explosion flame suppressed by foam metal [J]. Journal of Mining and Safety Engineering, 2013, 30(3): 463–467.
    [21]
    ZHUANG C J, WANG Z R, ZHANG K, et al. Explosion suppression of porous materials in a pipe-connected spherical vessel [J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104106. DOI: 10.1016/j.jlp.2020.104106.
    [22]
    WANG Y J, JIANG S G, WU Z Y, et al. Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust [J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 451–457. DOI: 10.1016/j.jlp.2018.09.009.
    [23]
    SANTOSA S P, ARIFURRAHMAN F, IZZUDIN M H, et al. Response analysis of blast impact loading of metal-foam sandwich panels [J]. Procedia Engineering, 2017, 173: 495–502. DOI: 10.1016/j.proeng.2016.12.073.
    [24]
    魏春荣, 徐敏强, 孙建华, 等. 多孔材料抑制瓦斯爆炸传播的实验及机理 [J]. 功能材料, 2012, 43(16): 2247–2250, 2255. DOI: 10.3969/j.issn.1001-9731.2012.16.031.

    WEI C R, XU M Q, SUN J H, et al. Experiment and mechanism of porous materials for suppressing the gas explosion [J]. Journal of Functional Materials, 2012, 43(16): 2247–2250, 2255. DOI: 10.3969/j.issn.1001-9731.2012.16.031.
    [25]
    余明高, 刘梦茹, 温小萍, 等. 超细水雾-多孔材料协同抑制瓦斯爆炸实验研究 [J]. 煤炭学报, 2019, 44(5): 1562–1569. DOI: 10.13225/j.cnki.jccs.2018.0795.

    YU M G, LIU M R, WEN X P, et al. Synergistic inhibition of gas explosion by ultrafine water mist-porous materials [J]. Journal of China Coal Society, 2019, 44(5): 1562–1569. DOI: 10.13225/j.cnki.jccs.2018.0795.
    [26]
    余明高, 万少杰, 徐永亮, 等. 荷电细水雾对管道瓦斯爆炸超压的影响规律研究 [J]. 中国矿业大学学报, 2015, 44(2): 227–232, 261. DOI: 10.13247/j.cnki.jcumt.000301.

    YU M G, WAN S J, XU Y L, et al. Study on the overpressure of gas explosion in the pipeline affected by charged water mist [J]. Journal of China University of Mining & Technology, 2015, 44(2): 227–232, 261. DOI: 10.13247/j.cnki.jcumt.000301.
    [27]
    魏春荣. 多孔材料对瓦斯爆炸抑制作用研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012: 84–105.

    WEI C R. Porous materials inhibition on gas explosion [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2012: 84–105.
    [28]
    林柏泉. 瓦斯爆炸动力学特征参数的测定及其分析 [J]. 煤炭学报, 2002, 27(2): 164–167. DOI: 10.3321/j.issn:0253-9993.2002.02.011.

    LIN B Q. The measurement and analysis of dynamics feature parameter in gas explosion [J]. Journal of China Coal Society, 2002, 27(2): 164–167. DOI: 10.3321/j.issn:0253-9993.2002.02.011.
    [29]
    魏春荣, 李晓光, 孙建华, 等. 多孔材料阻隔爆效果评估方法 [J]. 湖南科技大学学报(自然科学版), 2014, 29(4): 1–6. DOI: 10.13582/j.cnki.1672-9102.2014.04.001.

    WEI C R, LI X G, SUN J H, et al. Research on evaluation method of suppression and isolation of explosion based on porous material [J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2014, 29(4): 1–6. DOI: 10.13582/j.cnki.1672-9102.2014.04.001.
    [30]
    魏春荣, 徐敏强, 王树桐, 等. 多孔材料抑制瓦斯爆炸火焰波的实验研究 [J]. 中国矿业大学学报, 2013, 42(2): 206–213. DOI: 10.13247/j.cnki.jcumt.2013.02.008.

    WEI C R, XU M Q, WANG S T, et al. Experiment of porous materials for suppressing the gas explosion flame wave [J]. Journal of China University of Mining and Technology, 2013, 42(2): 206–213. DOI: 10.13247/j.cnki.jcumt.2013.02.008.
    [31]
    刘庆刚, 魏青, 韩伟信, 等. 基于有限元法的V型缺口平板应力集中系数研究 [J]. 河北工业科技, 2019, 36(4): 240–245. DOI: 10.7535/hbgykj.2019yx04003.

    LIU Q G, WEI Q, HAN W X, et al. Study of the stress concentration factors of a V-notched plate by using finite element method [J]. Hebei Journal of Industrial Science and Technology, 2019, 36(4): 240–245. DOI: 10.7535/hbgykj.2019yx04003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (221) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return