GAO Chu, KONG Xiangzhen, FANG Qin, WANG Yin, YANG Ya. Numerical study on attenuation of stress wave in concrete subjected to explosion[J]. Explosion And Shock Waves, 2022, 42(12): 123202. doi: 10.11883/bzycj-2022-0041
Citation: GAO Chu, KONG Xiangzhen, FANG Qin, WANG Yin, YANG Ya. Numerical study on attenuation of stress wave in concrete subjected to explosion[J]. Explosion And Shock Waves, 2022, 42(12): 123202. doi: 10.11883/bzycj-2022-0041

Numerical study on attenuation of stress wave in concrete subjected to explosion

doi: 10.11883/bzycj-2022-0041
  • Received Date: 2022-01-25
  • Rev Recd Date: 2022-03-09
  • Available Online: 2022-03-29
  • Publish Date: 2022-12-08
  • Based on the Kong-Fang concrete material model and the multi-material arbitrary Lagrangian Eulerian (MMALE) algorithm available in LS-DYNA, the attenuation of stress wave in concrete subjected to explosion was numerically studied. On the basis of comparative analysis of different material models, numerical algorithms and selection of appropriate mesh size, the proposed numerical algorithm and material models along with the corresponding parameters were firstly validated by comparing the numerically simulated spherical charge detonated in a concrete target with the corresponding test data in terms of peak stress and stress-time history. Then the attenuation of stress wave subjected to spherical charge detonated in concrete was numerically investigated, in which the radial and circumferential stress-time histories at different scaled distances were analyzed in detail to reveal the mechanism of stress wave attenuation. The numerical results were fitted to develop an empirical formula for the peak stress of the free-field compression wave in concrete at the close zone with the aid of dimensional analysis. Besides, the applicability of the developed empirical formula was also discussed. The influence of charge buried depth on peak stress in concrete at different distances was also numerically studied to develop a quantitative relationship between charge buried depth, distance and the so-called coupling factor. Numerical results demonstrate that the Kong-Fang concrete material model can be used to simulate the attenuation of explosion stress wave in concrete with good accuracy. The influence of the charge buried depth and the distance from charge the center on the coupling factor of peak stress can be quantified by defining the mass coefficient and coupling constant. The empirical formula for peak stress of compression wave in concrete at the close zone is appropriate for varied charge buried depth, distance and concrete strength. The present numerical results are useful for blast-resistant design and can provide a reliable reference for estimating the damage degree of concrete caused by explosion.
  • [1]
    方秦, 陈小伟. 冲击爆炸效应与工程防护专辑·编者按 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024601. DOI: 10.1360/SSPMA-2019-0404.

    FANG Q, CHEN X W. Special topic of impact and explosion effect and engineering protection [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50(2): 024601. DOI: 10.1360/SSPMA-2019-0404.
    [2]
    GRAN J K, EHRGOTT J Q, CARGILE J D. Cavity expansion experiments with spherical explosive charges in concrete [R]. Vicksburg, USA: Army Engineer Research and Development Center, 2009.
    [3]
    SCHMIDT M J. High pressure and high strain rate behavior of cementitious materials: experiments and elastic/viscoplastic modeling [D]. Florida, USA: University of Florida, 2003: 4−56.
    [4]
    MU C M, ZHOU H, MA H F. Prediction method for ground shock parameters of explosion in concrete [J]. Construction and Building Materials, 2021, 291: 123372. DOI: 10.1016/j.conbuildmat.2021.123372.
    [5]
    黄家蓉, 刘光昆, 吴飚, 等. 爆炸冲击作用下混凝土中动态应力波测试与仿真 [J]. 防护工程, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.

    HUANG J R, LIU G K, WU B, et al. Testing and simulation of dynamic stress wave in concrete under explosion and impact [J]. Protective Engineering, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.
    [6]
    宗国庆. 混凝土介质爆破效应研究 [D]. 北京: 北京理工大学, 1994: 74−76.

    ZONG G Q. Research on blasting effects under concrete medium [D]. Beijing, China: Beijing Institute of Technology, 1994: 74−76.
    [7]
    TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344.
    [8]
    杨刚, 胡德安, 韩旭. 混凝土中爆炸模拟的数值方法比较 [J]. 应用力学学报, 2011, 28(4): 423–426.

    YANG G, HU D A, HAN X. Comparison study of numerical methods in simulation of explosion in concretes [J]. Chinese Journal of Applied Mechanics, 2011, 28(4): 423–426.
    [9]
    董永香, 夏昌敬, 段祝平. 平面爆炸波在半无限混凝土介质中传播与衰减特性的数值分析 [J]. 工程力学, 2006, 23(2): 60–65. DOI: 10.3969/j.issn.1000-4750.2006.02.011.

    DONG Y X, XIA C J, DUAN Z P. Numerical analysis of plane explosive wave propagation with its attenuation behavior in semi-infinite medium [J]. Engineering Mechanics, 2006, 23(2): 60–65. DOI: 10.3969/j.issn.1000-4750.2006.02.011.
    [10]
    赵凯, 王肖钧, 卞梁, 等. 混凝土介质中不同药形装药爆炸波传播特性的数值模拟 [J]. 中国科学技术大学学报, 2007, 37(7): 711–716. DOI: 10.3969/j.issn.0253-2778.2007.07.004.

    ZHAO K, WANG X J, BIAN L, et al. Numerical study on the propagation and damage behavior of the blasting wave with differently shaped explosives in concrete [J]. Journal of University of Science and Technology of China, 2007, 37(7): 711–716. DOI: 10.3969/j.issn.0253-2778.2007.07.004.
    [11]
    KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [12]
    ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [13]
    WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
    [14]
    王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.

    WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
    [15]
    YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860.
    [16]
    MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. DOI: 10.1007/s11831-021-09553-2.
    [17]
    李重情, 穆朝民, 石必明. 变埋深条件下混凝土中爆炸应力传播规律的研究 [J]. 振动与冲击, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.07.021.

    LI Z Q, MU C M, SHI B M. Investigate on shock stress propagation in concrete at different depths under blasting [J]. Journal of Vibration and Shock, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.07.021.
    [18]
    DRAKE J L, LITTLE C D. Ground shock from penetrating conventional weapons [R]. 1983: 1−6.
    [19]
    施鹏, 邓国强, 杨秀敏, 等. 土中爆炸地冲击能量分布研究 [J]. 爆炸与冲击, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.

    SHI P, DENG G Q, YANG X M, et al. Study on ground shock energy distribution of explosion in soil [J]. Explosion and Shock Waves, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.
    [20]
    LEONG E C, ANAND S, CHEONG H K, et al. Re-examination of peak stress and scaled distance due to ground shock [J]. International Journal of Impact Engineering, 2007, 34(9): 1487–1499. DOI: 10.1016/j.ijimpeng.2006.10.009.
    [21]
    GRAN J K, FREW D J. In-target radial stress measurements from penetration experiments into concrete by ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1997, 19(8): 715–726. DOI: 10.1016/S0734-743X(97)00008-0.
    [22]
    GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003.
    [23]
    ERZAR B, PONTIROLI C, BUZAUD E. Shock characterization of an ultra-high strength concrete [J]. The European Physical Journal Special Topics, 2016, 225(2): 355–361. DOI: 10.1140/epjst/e2016-02637-4.
    [24]
    PONTIROLI C, ERZAR B. Impact response of UHPC and UHPFRC: experimental study and numerical simulation [C] // Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Quebec, Canada, 2019.
    [25]
    WILLIAMS E M, GRAHAM S S, AKERS S A, et al. Mechanical properties of a baseline UHPC with and without steel fibers [J]. WIT Transactions on Engineering Sciences, 2009, 64(12): 93–104. DOI: 10.2495/MC090091.
    [26]
    REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1–14. DOI: 10.1016/j.conbuildmat.2016.02.227.
    [27]
    TARVER C M, MCGUIRE E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials [R]. 2002.
    [28]
    VAN AMELSFORT R, WEERHEIJM J. The failure mode of concrete slabs due to contact charges [R]. Netherlands: Prins Maurits Laboratorium, 1988.
    [29]
    FORBES J W. Shock wave compression of condensed matter: a primer [M]. Berlin, Germany: Springer, 2012.
    [30]
    赵凯. 分层防护层对爆炸波的衰减和弥散作用研究 [D]. 合肥: 中国科学技术大学, 2007: 74−75.

    ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering [D]. Hefei, Anhui, China: University of Science and Technology of China, 2007: 74−75.
    [31]
    郑哲敏, 解伯民, 谈庆明, 等. 流体弹塑性模型及其在核爆与穿甲方面的应用 [R]. 北京: 中国科学院力学研究所, 1982.
    [32]
    谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005: 1−3.

    TAN Q M. Dimensional analysis [M]. Hefei, Anhui, China: China University of Science and Technology Press, 2005: 1−3.
    [33]
    WESTINE P S, FRIESENHAHN G J. Free-field ground shock pressures from buried detonations in saturated and unsaturated soils [R]. 1983: 12−16.
  • Cited by

    Periodical cited type(15)

    1. 祝飞翔,高飞,刘晨康,邓树新. 带壳装药在混凝土中爆炸毁伤效果的影响规律研究. 振动与冲击. 2025(05): 278-288 .
    2. 吴昊,岑国华,程月华,张瑜. 基于战斗部侵彻动爆一体化效应的遮弹层设计. 爆炸与冲击. 2025(05): 90-105 . 本站查看
    3. 康耕新,颜海春,张亚栋,刘明君,郝礼楷. 接触爆炸下混凝土墩破坏效应试验与数值模拟. 兵工学报. 2024(01): 144-155 .
    4. 高子涛,马泽瑞,汪书敏,王志亮,尚晓梓,毕云飞,华正宇,缪逢晨. 花岗岩中应力波传播试验与数值模拟分析. 矿业工程研究. 2024(03): 29-35 .
    5. 杨仁树,丁晨曦,杨立云,杨阳,许鹏,肖成龙,游帅. 岩石爆破基础理论研究进展. 工程爆破. 2024(05): 11-19 .
    6. 方秦,高矗,孔祥振,杨亚. 主体结构荷载可控的新型组合式防护结构(Ⅰ):抗爆机制. 爆炸与冲击. 2024(11): 3-15 . 本站查看
    7. 杨耀宗,孔祥振,方秦,洪智捷,高矗. 混凝土中带壳柱形装药爆炸应力波衰减规律的数值模拟. 爆炸与冲击. 2024(11): 62-76 . 本站查看
    8. 孙善政,王炜,刘渊,卢浩,赖杰. 分层岩土介质中的爆炸地冲击横向传播规律. 火箭军工程大学学报. 2024(06): 12-22 .
    9. 郭志东,李光,祝贺超,胡世超,左进京,游帅. 不同装药结构下混凝土中炮孔轴向、径向爆炸应力波的衰减规律研究. 爆破. 2024(04): 18-24+34 .
    10. 罗宁,柴亚博,李鹏龙,杨梦迪,杨忠州,廖禹成,曹小龙,张浩浩. 甲烷/氧气燃爆下页岩应力波衰减及损伤规律研究. 矿业科学学报. 2024(06): 858-869 .
    11. 李子玉,丁建国,周广盼. 基于ALE-FEM-SPH算法的混凝土板在爆炸荷载下响应分析. 南京理工大学学报. 2024(06): 773-780 .
    12. 王爱文,孙郑齐,潘一山,范德威,李超,于新河,王岗,卢闯. 梯度围岩结构应力波透射模型与传播衰减规律. 煤炭学报. 2023(05): 1969-1984 .
    13. 洪智捷,洪建,杨耀宗. 遮弹层厚度对砂土中地冲击荷载的影响. 陆军工程大学学报. 2023(05): 60-67 .
    14. 张涛,庄铁栓,伍俊,邢倩倩. 冲击波在不同物态介质界面传播的理论分析. 防护工程. 2023(05): 28-35 .
    15. 王宇,严鹏志,范鹏贤. 岩土中爆炸冲击荷载的落锤模拟试验研究. 陆军工程大学学报. 2023(06): 60-67 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article Metrics

    Article views (1108) PDF downloads(332) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return