Citation: | CHENG Yuehua, WU Hao, XUE Yijiang, ZHAO Ronggui, YANG Li. Application of high-speed 3D-DIC measurement technology in perforation test of armor steel[J]. Explosion And Shock Waves, 2022, 42(10): 104202. doi: 10.11883/bzycj-2022-0059 |
[1] |
FRAS T, ROTH C C, MOHR D. Fracture of high-strength armor steel under impact loading [J]. International Journal of Impact Engineering, 2018, 111: 147–164. DOI: 10.1016/j.ijimpeng.2017.09.009.
|
[2] |
FRAS T, ROTH C C, MOHR D. Dynamic perforation of ultra-hard high-strength armor steel: impact experiments and modeling [J]. International Journal of Impact Engineering, 2019, 131: 256–271. DOI: 10.1016/j.ijimpeng.2019.05.008.
|
[3] |
CHOUDHARY S, SINGH P K, KHARE S, et al. Ballistic impact behaviour of newly developed armour grade steel: an experimental and numerical study [J]. International Journal of Impact Engineering, 2020, 140: 103557. DOI: 10.1016/j.ijimpeng.2020.103557.
|
[4] |
CHEVALIER L, CALLOCH S, HILD F, et al. Digital image correlation used to analyze the multiaxial behavior of rubber-like materials [J]. European Journal of Mechanics - A/Solids, 2001, 20(2): 169–187. DOI: 10.1016/S0997-7538(00)01135-9.
|
[5] |
MENG S Q, LI J M, LIU Z H, et al. Study of flexural and crack propagation behavior of layered fiber-reinforced cementitious mortar using the digital image correlation (DIC) technique [J]. Materials, 2021, 14(6): 4700. DOI: 10.3390/ma14164700.
|
[6] |
杨洋, 孙炜, 王亮, 等. 基于DIC方法的TC4钛合金高温拉伸试验 [J]. 材料热处理学报, 2021, 42(2): 44–51. DOI: 10.13289/j.issn.1009-6264.2020-0378.
YANG Y, SUN W, WANG L, et al. High temperature tensile test of TC4 titanium alloy based on digital image correlation method [J]. Transactions of Materials and Heat Treatment, 2021, 42(2): 44–51. DOI: 10.13289/j.issn.1009-6264.2020-0378.
|
[7] |
陈学文, 白荣忍, 刘佳琪, 等. 基于数字图像相关技术的X12合金钢高温损伤模型试验验证方法 [J]. 材料热处理学报, 2021, 42(8): 163–169. DOI: 10.13289/j.issn.1009-6264.2021-0073.
CHEN X W, BAI R R, LIU J Q, et al. High temperature damage model test verification method of X12 alloy steel based on digital image correlation technology [J]. Transactions of Materials and Heat Treatment, 2021, 42(8): 163–169. DOI: 10.13289/j.issn.1009-6264.2021-0073.
|
[8] |
徐纪鹏, 董新龙, 付应乾, 等. 不同加载边界下混凝土巴西劈裂过程及强度的DIC实验分析 [J]. 力学学报, 2020, 52(3): 864–876. DOI: 10.6052/0459-1879-19-303.
XU J P, DONG X L, FU Y Q, et al. Experimental analysis of process and tensile strength for concrete Brazilian splitting test with different loading boundaries by DIC method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 864–876. DOI: 10.6052/0459-1879-19-303.
|
[9] |
杨国梁, 毕京九, 郭伟民, 等. 加载角度对层理页岩裂纹扩展影响的实验研究 [J]. 爆炸与冲击, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097.
YANG G L, BI J J, GUO W M, et al. Experimental study on the effect of loading angle on crack propagation in bedding shale [J]. Explosion and Shock Waves, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097.
|
[10] |
宋海鹏, 刘长春. 基于数字图像相关的预腐蚀2024-T4铝合金疲劳开裂实验 [J]. 航空材料学报, 2020, 40(2): 43–52. DOI: 10.11868/j.issn.1005-5053.2019.000164.
SONG H P, LIU C C. Experimental study on fatigue cracking in pre-corroded aluminum alloy 2024-T4 via digital image correlation [J]. Journal of Aeronautical Materials, 2020, 40(2): 43–52. DOI: 10.11868/j.issn.1005-5053.2019.000164.
|
[11] |
PAN B, YU L P, YANG Y Q, et al. Full-field transient 3D deformation measurement of 3D braided composite panels during ballistic impact using single-camera high-speed stereo-digital image correlation [J]. Composite Structures, 2016, 157: 25–32. DOI: 10.1016/j.compstruct.2016.08.017.
|
[12] |
徐振洋, 杨军, 郭连军. 爆炸聚能作用下混凝土试件劈裂的高速3D DIC实验 [J]. 爆炸与冲击, 2016, 36(3): 400–406. DOI: 10.11883/1001-1455(2016)03-0400-07.
XU Z Y, YANG J, GUO L J. Study of the splitting crack propagation morphology using high-speed 3D DIC [J]. Explosion and Shock Waves, 2016, 36(3): 400–406. DOI: 10.11883/1001-1455(2016)03-0400-07.
|
[13] |
ROLFE E, KABOGLU C, QUINN R, et al. High velocity impact and blast loading of composite sandwich panels with novel carbon and glass construction [J]. Journal of Dynamic Behavior of Materials, 2018, 4(3): 359–372. DOI: 10.1007/s40870-018-0163-5.
|
[14] |
XING H Z, ZHAO J, WU G, et al. Perforation model of thin rock slab subjected to rigid projectile impact at an intermediate velocity [J]. International Journal of Impact Engineering, 2020, 139: 103536. DOI: 10.1016/j.ijimpeng.2020.103536.
|
[15] |
魏宏健, 姜雄文, 赵庚, 等. 爆炸冲击波载荷下预制孔铝板的动态响应 [J]. 兵工学报, 2021, 42(S1): 96–104. DOI: 10.3969/j.issn.1000-1093.2021.S1.013.
WEI H J, JIANG X W, ZHAO G, et al. Dynamic response of aluminum plates with pre-formed holes under airblast loading [J]. Acta Armamentarii, 2021, 42(S1): 96–104. DOI: 10.3969/j.issn.1000-1093.2021.S1.013.
|
[16] |
LIU X, YANG J, XU Z Y, et al. Experimental investigations on crack propagation characteristics of granite rectangle plate with a crack (GRPC) under different blast loading rates [J]. Shock and Vibration, 2020, 2020: 8885582. DOI: 10.1155/2020/8885582.
|
[17] |
范亚夫, 魏延鹏, 薛跃军, 等. 数字图像相关测试技术在霍普金森杆加载实验中的应用 [J]. 实验力学, 2015, 30(5): 590–598. DOI: 10.7520/1001-4888-14-273.
FAN Y F, WEI Y P, XUE Y J, et al. On the application of digital image correlation testing technology in Hopkinson bar loading [J]. Journal of Experimental Mechanics, 2015, 30(5): 590–598. DOI: 10.7520/1001-4888-14-273.
|
[18] |
邢灏喆, 王明洋, 范鹏贤, 等. 基于高速3D-DIC技术的砂岩动力特性粒径效应研究 [J]. 爆炸与冲击, 2021, 41(11): 113101. DOI: 10.11883/bzycj-2021-0088.
XING H Z, WANG M Y, FAN P X, et al. Grain-size effect on dynamic behavior of sandstone based on high-speed 3D-DIC technique [J]. Explosion and Shock Waves, 2021, 41(11): 113101. DOI: 10.11883/bzycj-2021-0088.
|
[19] |
ATAPEK S H, KARAGOZ S. Ballistic impact behaviour of a tempered bainitic steel against 7.62 mm armour piercing projectile [J]. Defence Science Journal, 2011, 61(1): 81–87. DOI: 10.14429/dsj.61.411.
|
[20] |
BURIAN W, ŻOCHOWSKI P, GMITRZUK M, et al. Protection effectiveness of perforated plates made of high strength steel [J]. International Journal of Impact Engineering, 2019, 126: 27–39. DOI: 10.1016/j.ijimpeng.2018.12.006.
|
[21] |
程月华, 吴昊, 谭可可, 等. 装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053302. DOI: 10.11883/bzycj-2021-0278.
CHENG Y H, WU H, TAN K K, et al. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets [J]. Explosion and Shock Waves, 2022, 42(5): 053302. DOI: 10.11883/bzycj-2021-0278.
|
[22] |
Livermore Software Technology Corporation. LS-DYNA keyword user’s manual [Z]. Livermore: Livermore Software Technology Corporation, 2001.
|
[23] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. Hague, 1983.
|
[24] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[25] |
STEINBERG D J. Equation of state and strength properties of selected materials [M]. Livermore: Lawrence Livermore National Laboratory, 1996.
|
[26] |
IQBAL D, TIWARI V. Investigations on the influence of projectile shape on the transient and post impact response of thin sheet structures [J]. Thin-Walled Structures, 2019, 145: 106402. DOI: 10.1016/j.tws.2019.106402.
|
[1] | XU Zhaowei, WANG Wei, LI Yishuo, ZHANG Zhonghao, ZHANG Congkun. Blast resistance of polyurea/reinforced concrete thick slab composite structures under contact explosion[J]. Explosion And Shock Waves, 2025, 45(3): 033104. doi: 10.11883/bzycj-2024-0083 |
[2] | YANG Guangdong, TIAN Xujie, FAN Yong, TIAN Bin, LU Xiaochun. Blast resistance of reinforced concrete arches subjected to underwater explosions[J]. Explosion And Shock Waves, 2024, 44(2): 023101. doi: 10.11883/bzycj-2023-0235 |
[3] | ZENG Hao, YUAN Pengcheng, YANG Ting, XU Shenchun, WU Chengqing. Experimental and numerical study of G-UHPC composite slab against contact blast[J]. Explosion And Shock Waves, 2024, 44(6): 063202. doi: 10.11883/bzycj-2023-0432 |
[4] | JIANG Hongjie, LU Wenbo, WANG Gaohui, LIU Yijia, WANG Yang. On characteristics of failure zones in mass concrete subjected to underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(10): 102202. doi: 10.11883/bzycj-2022-0415 |
[5] | MA Shixin, JI Yangziyi, ZHONG Mingshou, LI Xiangdong. Study on the vulnerability of concrete obstacle under contact explosion[J]. Explosion And Shock Waves, 2023, 43(7): 073201. doi: 10.11883/bzycj-2022-0538 |
[6] | ZHAO Haonan, FANG Hongyuan, ZHAO Xiaohua, WANG Gaohui. Analysis on the blast resistance of polymer composite slabs under contact explosions[J]. Explosion And Shock Waves, 2023, 43(5): 052201. doi: 10.11883/bzycj-2022-0161 |
[7] | XU Weizheng, ZHAO Hongtao, LI Yexun, HUANG Yu, FU Hua. An experimental study on dynamic response of cylindrical shell under near-field/contact underwater explosion[J]. Explosion And Shock Waves, 2023, 43(9): 091413. doi: 10.11883/bzycj-2023-0072 |
[8] | WEI Jiuqi, LI Lei, WANG Shihe, ZHANG Chunxiao, CAO Shaohua, GAO Jie. Experimental study on local damage effect of ultra-high performance concrete slabs under contact explosion[J]. Explosion And Shock Waves, 2022, 42(4): 042201. doi: 10.11883/bzycj-2021-0174 |
[9] | LI Shengtong, WANG Wei, LIANG Shifa, SANG Qinyang, ZHENG Rongyue. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion And Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495 |
[10] | ZHAO Chunfeng, HE Kaicheng, LU Xin, PAN Rong, WANG Jingfeng, LI Xiaojie. Numerical study of blast resistance of curved steel-concrete-steel composite slabs[J]. Explosion And Shock Waves, 2022, 42(2): 025101. doi: 10.11883/bzycj-2021-0205 |
[11] | HU Wenwei, WANG Rui, ZHAO Hui, ZHANG Li. Study on explosion-resistance performance of concrete-filled steel tubular columns considering the influence of elevated temperatures[J]. Explosion And Shock Waves, 2021, 41(11): 113102. doi: 10.11883/bzycj-2020-0444 |
[12] | ZHAO Chunfeng, LU Xin, HE Kaicheng, ZHANG Zengde, WANG Jingfeng, LI Xiaojie. Blast resistance property of concrete shear wall with single-side steel plate[J]. Explosion And Shock Waves, 2020, 40(12): 121403. doi: 10.11883/bzycj-2020-0058 |
[13] | Wu Baohua, Zhang Shanggen, Kang Zhengyan. Anti-blast properties of RC superimposed slab shear wall[J]. Explosion And Shock Waves, 2017, 37(1): 92-98. doi: 10.11883/1001-1455(2017)01-0092-07 |
[14] | Xu Qiang, Cao Yang, Chen Jianyun. Antiknock performance of an overflow dam subjected to contact explosion[J]. Explosion And Shock Waves, 2017, 37(4): 677-684. doi: 10.11883/1001-1455(2017)04-0677-08 |
[15] | Yue Songlin, Wang Mingyang, Zhang Ning, Qiu Yanyu, Wang Derong. A method for calculating critical spalling and perforating thicknesses of concrete slabs subjected to contact explosion[J]. Explosion And Shock Waves, 2016, 36(4): 472-482. doi: 10.11883/1001-1455(2016)04-0472-11 |
[16] | ZhangShe-rong, WangGao-hu. Antiknockperformanceofconcretegravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2013, 33(3): 255-263. doi: 10.11883/1001-1455(2013)03-0255-08 |
[17] | WANG Wei, ZHANG Duo, LU Fang-yun, TANG Fu-jing, WANG Song-chuan. Anti-explosionperformancesofsquarereinforcedconcreteslabs underclose-inexplosions[J]. Explosion And Shock Waves, 2012, 32(3): 251-258. doi: 10.11883/1001-1455(2012)03-0251-08 |
[18] | DENG Gui-de, ZHENG Jin-yang, CHEN Yong-jun, ZHAO Long-mao, ZHAO Yong-gang, MA Li. Anti-explosioncapabilityandscaleeffectofdiscretemulti-layered explosioncontainmentvessels[J]. Explosion And Shock Waves, 2010, 30(2): 215-219. doi: 10.11883/1001-1455(2010)02-0215-05 |
[19] | WANG De-rong, DAI Ming, LI Jie, WANG Ming-yang. Failure effect of steel-fiber reactive power concrete (RPC) shelter plate under contact explosion[J]. Explosion And Shock Waves, 2008, 28(1): 67-74. doi: 10.11883/1001-1455(2008)01-0067-08 |
[20] | HU Jin-sheng, YANG Xiu-min, ZHOU Zao-sheng, ENG Guo-qiang, TANG De-gao. Experimental investigation on contact explosion damage effect to fiber reinforced concrete slab with soil bedding[J]. Explosion And Shock Waves, 2005, 25(2): 157-162. doi: 10.11883/1001-1455(2005)02-0157-06 |
1. | 韩鹏飞,李映春,刘晶波,王菲,董振平. 双钢板混凝土板抗弹体贯穿速度预测及因素评估. 科学技术与工程. 2025(10): 3986-3995 . ![]() | |
2. | 赵春风,张利,李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能. 高压物理学报. 2024(01): 88-104 . ![]() | |
3. | 王毅. 爆炸荷载作用下钢筋混凝土板性能分析. 砖瓦. 2024(03): 56-59 . ![]() | |
4. | 李少杰,张云峰,张玉令,闫军,杜仕国,陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究. 材料导报. 2024(11): 92-100 . ![]() | |
5. | 朱黄浩,顾琳琳,王振,吴汩,李胡军. 土中钢板-混凝土筒结构抗爆性能研究. 工程爆破. 2024(03): 20-28 . ![]() | |
6. | 赵春风,何凯城,李晓杰,王静峰. L型隔板弧形双钢板组合墙板抗爆性能试验与数值研究. 工程力学. 2024(09): 79-90 . ![]() | |
7. | 曲艳东,李帅清,汪帅. 爆炸荷载作用下曲面钢-混凝土钢组合板的动态响应研究. 大连民族大学学报. 2024(05): 418-424 . ![]() | |
8. | 孙善政,卢浩,刘渊,王炜,陈昊. 二次爆炸作用下钢板-钢筋混凝土竖井变形特征及计算. 振动与冲击. 2024(24): 169-177+224 . ![]() | |
9. | 刘志东,赵小华,方宏远,王高辉,石明生. 高聚物牺牲包层对钢筋混凝土板的爆炸毁伤缓解效应. 爆炸与冲击. 2023(02): 89-105 . ![]() | |
10. | 朱玉富,赵春风,周志航. 基于机器学习的钢筋混凝土板在爆炸作用下的最大位移预测模型. 高压物理学报. 2023(02): 92-106 . ![]() | |
11. | 赵春风,周志航,朱玉富. 基于SPH方法的变压器网侧套管内部爆炸数值模拟及稳定性分析. 高压物理学报. 2023(03): 158-169 . ![]() | |
12. | 赵春风,周志航,叶昕,李晓杰. 接触爆炸作用下双波纹钢板混凝土组合板抗爆性能数值研究. 建筑钢结构进展. 2023(12): 39-49 . ![]() | |
13. | 赵春风,何凯城,卢欣,潘蓉,王静峰,李晓杰. 弧形双钢板混凝土组合板抗爆性能数值研究. 爆炸与冲击. 2022(02): 140-153 . ![]() | |
14. | 王海腾,李治中,邵鲁中,唐德高,潘建. 坑道防护门化爆荷载值的数值模拟研究. 防护工程. 2022(05): 13-20 . ![]() | |
15. | 赵春风,何凯城,卢欣,刘用,王静峰. 弧形与平面双钢板混凝土组合板抗爆性能对比研究. 建筑钢结构进展. 2021(07): 89-96 . ![]() |