Citation: | WANG Yu, ZHAI Cheng, TANG Wei, SHI Kelong. Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings[J]. Explosion And Shock Waves, 2023, 43(6): 063102. doi: 10.11883/bzycj-2022-0248 |
[1] |
贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景 [J]. 石油勘探与开发, 2012, 39(2): 129–136.
JIA C Z, ZHENG M, ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development [J]. Petroleum Exploration and Development, 2012, 39(2): 129–136.
|
[2] |
TAYLOUR G B, RIFAI H S, HILDENBRAND Z L, et al. Elucidating hydraulic fracturing impacts on ground water quality using a regional geospatial statistical modeling approach [J]. Science of the Total Environment, 2016, 545: 114–126.
|
[3] |
韩烈祥, 朱丽华, 孙海芳, 等. LPG无水压裂技术 [J]. 天然气工业, 2014, 34(6): 48–54.
HAN L X, ZHU L H, SUN H F, et al. LPG waterless fracturing technology [J]. Nature Gas Industry, 2014, 34(6): 48–54.
|
[4] |
翟成, 郑仰峰, 孙勇, 等. 一种页岩储层甲烷原位燃爆压裂与助燃剂安全投放协同控制方法: CN112761588B [P]. 2022-02-08.
|
[5] |
刘厅, 翟成, 赵洋, 等. 基于LF-NMR的页岩多尺度孔裂隙应力敏感性评价 [J]. 煤炭学报, 2021, 46(S2): 887–897. DOI: 10.13225/j.cnki.jccs.2021.0852.
LIU T, ZHAI C, ZHAO Y, et al. Evaluation on stress sensitivity of multiscale pore and fracture in shale based on LF-NMR [J]. Journal of China Coal Society, 2021, 46(S2): 887–897. DOI: 10.13225/j.cnki.jccs.2021.0852.
|
[6] |
JUN L, CAO L Y, GUO B Y, et al. Prediction of productivity of high energy gas-fractured oil wells [J]. Journal of Petroleum Science and Engineering, 2018, 160: 510–518. DOI: 10.1016/j.petrol.2017.10.071.
|
[7] |
陈莉静, 冯纪米, 吴小超. 高能气体瞬态破岩特性试验研究 [J]. 岩石力学与工程学报, 2020, 39(S2): 3271–3277.
CHEN L J, FENG J M, WU X C. Experimental research on transient rock breaking characteristics of high-energy gas [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3271–3277.
|
[8] |
任山, 黄禹忠, 林永茂, 等. 燃爆诱导及酸处理新技术在川西须家河气藏的应用 [J]. 钻采工艺, 2009, 32(1): 31–32.
REN S, HUANG Y Z, LIN Y M, et al. Application of propagated blast and acid treatment technology in Chuanxi Xujiahe gas reservoir [J]. Drilling and production Technology, 2009, 32(1): 31–32.
|
[9] |
任杨, 吴飞鹏, 蒲春生, 等. 长脉冲燃爆压裂复合燃速火药配方优化与应用 [J]. 科学技术与工程, 2014, 14(24): 68–73.
REN Y, WU F P, PU C S, et al. The optimization and application of composite burning rate gunpowder formula of long pulse explosive fracturing [J]. Science Technology and Engineering, 2014, 14(24): 68–73.
|
[10] |
吴飞鹏, 徐尔斯, 尉雪梅, 等. 燃爆诱导水力压裂多裂缝耦合起裂规律 [J]. 天然气工业, 2018, 38(11): 65–72.
WU F P, XU E S, WEI X M, et al. Laws of multi-fracture coupling initiation during blasting induced hydraulic fracturing [J]. Nature Gas Industry, 2018, 38(11): 65–72.
|
[11] |
吴飞鹏, 蒲春生, 陈德春, 等. 多级脉冲爆燃压裂作用过程耦合模拟 [J]. 石油勘探与开发, 2014, 41(5): 605–611.
WU F P, PU C S, CHEN D C, et al. Coupling simulation of multistage pulse conflagration compression fracturing [J]. Petroleum Exploration and Development, 2014, 41(5): 605–611.
|
[12] |
田怡萍. 页岩爆燃压裂下裂缝扩展模式数值模拟研究[D]. 四川绵阳: 西南科技大学, 2019: 1–8.
TIAN Y P. Numerical simulation study on crack propagation mode under shale deflagration fracturing[D]. Mianyang, Sichuan, China: Southwest University of Science and Technology,2019:1–8
|
[13] |
刘洪志. 多级燃爆压裂裂缝扩展规律模拟研究[D]. 山东青岛: 中国石油大学(华东), 2017: 2–9.
LIU H Z. Simulation on the fracture propagation laws of multi-stage blasting fracturing[D]. Qingdao, Shandong, China: China University of Petroleum (East China), 2017:2–9
|
[14] |
夏昌敬, 谢和平, 鞠杨. 孔隙岩石的SHPB试验研究 [J]. 岩石力学与工程学报, 2006, 25(5): 896–900.
XIA C J, XIE H P, JU Y. SHPB test on porous rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 896–900.
|
[15] |
许金余, 吕晓聪, 张军, 等. 循环冲击作用下围压对斜长角闪岩动态特性的影响研究 [J]. 振动与冲击, 2010, 29(8): 60–63.
XU J Y, LYU X C, ZHANG J, et al. Research on dynamic mechanical performance of amphibolite under cyclical impact loadings at different confining pressures [J]. Journal of Vibration and Shock, 2010, 29(8): 60–63.
|
[16] |
甘德清, 田晓曦, 刘志义, 等. 循环冲击状态下砂岩力学及损伤特性研究 [J]. 中国矿业, 2021, 30(3): 203–211.
GAN D Q, TIAN X X, LIU Z Y, et al. Study on mechanics and damage characteristics of sandstone under cyclic impact state [J]. China Mining Magazine, 2021, 30(3): 203–211.
|
[17] |
SHAN R L, JIANG Y S, LI B Q. Obtaining dynamic complete stress–strain curves for rock using the split Hopkinson pressure bar technique [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6): 983–992. DOI: 10.1016/S1365-1609(00)00031-9.
|
[18] |
金解放, 李夕兵, 常军然, 等. 循环冲击作用下岩石应力应变曲线及应力波特性 [J]. 爆炸与冲击, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
JIN J F, LI X B, CHANG J R, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings [J]. Explosion and Shock Waves, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
|
[19] |
谭玉叶, 汪杰, 宋卫东, 等. 循环冲击下胶结充填体动载力学特性试验研究 [J]. 采矿与安全工程学报, 2019, 36(1): 184–190.
TAN Y Y, WANG J, SONG W D, et al. Experimental study on mechanical properties of cemented tailings backfill under cycle dynamic loading test [J]. Journal of Mining & Safety Engineering, 2019, 36(1): 184–190.
|
[20] |
金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.
JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
|
[21] |
金解放, 李夕兵, 殷志强, 等. 轴压和循环冲击次数对砂岩动态力学特性的影响 [J]. 煤炭学报, 2012, 37(6): 923–930.
JIN J F, LI X B, YIN Z Q, et al. Effects of axial pressure and number of cyclic impacts on dynamic mechanical characteristics of sandstone [J]. Journal of China Coal Society, 2012, 37(6): 923–930.
|
[22] |
吕晓聪, 许金余, 赵德辉, 等. 冲击荷载循环作用下砂岩动态力学性能的围压效应研究 [J]. 工程力学, 2011, 28(1): 138–144.
LYU X C, XU J Y, ZHAO D H, et al. Research on confining pressure effect of sandstone dynamic mechanical performance under the cyclical impact loadings [J]. Engineering Mechanics, 2011, 28(1): 138–144.
|
[23] |
余永强, 张文龙, 范利丹, 等. 冲击荷载下煤系砂岩应变率效应及能量耗散特征 [J]. 煤炭学报, 2021, 46(7): 2281–2293.
YU Y Q, ZHANG W L, FAN L D, er al. Study on strain rate effect and energy dissipation characteristics of coal measures sandstone under impact loading [J]. Journal of China Coal Society, 2021, 46(7): 2281–2293.
|
[24] |
闫雷, 刘连生, 李仕杰, 等. 单轴循环冲击下弱风化花岗岩的损伤演化 [J]. 爆炸与冲击, 2020, 40(5): 053303. DOI: 10.11883/bzycj-2019-0354.
YAN L, LIU L S, LI S J, et al. Damage evolution of weakly-weathered granite under uniaxial cyclic impact [J]. Explosion and Shock Waves, 2020, 40(5): 053303. DOI: 10.11883/bzycj-2019-0354.
|
[25] |
杜晶. 不同长径比下岩石冲击动力学特性研究[D]. 长沙: 中南大学, 2011: 51–72.
DU J. Size effect on the dynamic mechanical properties under impact loads of rock [D]. Changsha, Hunan, China: Central South University, 2011:51-72.
|
[26] |
孙清佩, 张志镇, 李培超, 等. 黑色页岩动载破坏的层理效应及损伤本构模型研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1319–1331. DOI: 10.13722/j.cnki.jrme.2018.1333.
SUN Q P, ZHANG Z Z, LI P C, et al. Study on the bedding effect and damage constitutive model of black shale under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1319–1331. DOI: 10.13722/j.cnki.jrme.2018.1333.
|
[27] |
单仁亮, 薛友松, 张倩. 岩石动态破坏的时效损伤本构模型 [J]. 岩石力学与工程学报, 2003, 22(11): 1771–1776.
SHAN R L, XUE Y S, ZHANG Q. Time dependent damage model of rock under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1771–1776.
|
[28] |
杨圣奇, 徐卫亚, 韦立德, 等. 单轴压缩下岩石损伤统计本构模型与试验研究 [J]. 河海大学学报(自然科学版), 2004, 32(3): 200–203.
YANG S Q, XU W Y, WEI L D, et al. Statistical constitutive model for rock damage under uniaxial compression and its experimental study [J]. Journal of Hohai University (Natural Sciences), 2004, 32(3): 200–203.
|
[29] |
朱晶晶. 循环冲击载荷下岩石力学特性与损伤模型的试验研究[D]. 长沙: 中南大学, 2012.
ZHU J J. Experimental study of rock mechanical properties and damage model under cyclical dynamic loads [D].Changsha, Hunan, China: Central South University, 2012.
|
[30] |
朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究 [J]. 岩土工程学报, 2013, 35(3): 531–539.
ZHU J J, LI X B, GONG F Q, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531–539.
|
[31] |
黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究 [J]. 煤炭学报, 2011, 36(12): 2007–2011.
LI L Y, XU Z Q, XIE H P, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities [J]. Journal of China Coal Society, 2011, 36(12): 2007–2011.
|
[32] |
黎立云, 谢和平, 鞠杨, 等. 岩石可释放应变能及耗散能的实验研究 [J]. 工程力学, 2011, 28(3): 35–40.
LI L Y, XIE H P, JU Y, et al. Experimental investigations of releasable energy and dissipative energy within rock [J]. Engineering Mechanics, 2011, 28(3): 35–40.
|
[1] | WANG Wei, LIU Ze, NIU Qinghe, CHANG Jiangfang, YUAN Wei, ZHENG Yongxiang, SHANG Songhua. Characteristics of fracture propagation and permeability response of sandstone under cyclic impact effect[J]. Explosion And Shock Waves, 2025, 45(6): 061421. doi: 10.11883/bzycj-2024-0346 |
[2] | LIU Kangqi, LIU Hongyan, ZHOU Yuezhi, XUE Lei, ZHANG Guangxiong. Dynamic mechanical behaviors of single-jointed rock mass under cyclic impact loadings[J]. Explosion And Shock Waves, 2025, 45(6): 061423. doi: 10.11883/bzycj-2024-0353 |
[3] | YANG Guoliang, BI Jingjiu, DONG Zhiwen, ZHAO Tongde, ZHAO Jianyu, ZHAO Kangpu. Fracturing mechanism of bedding shale under directional fracture-controlled blasting[J]. Explosion And Shock Waves, 2024, 44(6): 061001. doi: 10.11883/bzycj-2023-0336 |
[4] | ZHANG Rongrong, SHEN Yonghui, MA Dongdong, PING Qi, YANG Yi. Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact[J]. Explosion And Shock Waves, 2024, 44(8): 081443. doi: 10.11883/bzycj-2023-0449 |
[5] | WANG Zhiliang, WANG Dawei, WANG Shumin, WU Xutao. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading[J]. Explosion And Shock Waves, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243 |
[6] | ZHANG Tao, YU Liyuan, SU Haijian, LUO Ning, WEI Jiangbo. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation[J]. Explosion And Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089 |
[7] | CHEN Haihua, ZHANG Xianfeng, LIU Chuang, LIN Kunfu, XIONG Wei, TAN Mengting. Research progress on impact deformation behavior of high-entropy alloys[J]. Explosion And Shock Waves, 2021, 41(4): 041402. doi: 10.11883/bzycj-2020-0414 |
[8] | ZHANG Mingtao, WANG Wei, WANG Qizhi, ZHANG Siyi. Dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiments[J]. Explosion And Shock Waves, 2021, 41(9): 093102. doi: 10.11883/bzycj-2020-0288 |
[9] | YANG Guoliang, BI Jingjiu, GUO Weimin, ZHANG Zhifei, HAN Zimo, CHENG Shuaijie. Experimental study on the effect of loading angle on crack propagation in bedding shale[J]. Explosion And Shock Waves, 2021, 41(9): 093101. doi: 10.11883/bzycj-2021-0097 |
[10] | CAO Xiang, TANG Jiani, WANG Zhu, ZHENG Yuxuan, ZHOU Fenghua. Effect of damage evolution on the fragmentation process of ductile metals[J]. Explosion And Shock Waves, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041 |
[11] | JIANG Zhaoxiu, GAO Guangfa, WANG Yonggang. Discrete element simulation on dynamic response and damage evolution in porous ferroelectric ceramics under shock compression[J]. Explosion And Shock Waves, 2020, 40(5): 053103. doi: 10.11883/bzycj-2019-0410 |
[12] | YAN Lei, LIU Liansheng, LI Shijie, YANG Daoxue, LIU Wei. Damage evolution of weakly-weathered granite under uniaxial cyclic impact[J]. Explosion And Shock Waves, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354 |
[13] | DENG Zhengding, XIANG Shuai, ZHOU Jianrong, WANG Guanshi, WANG Yuemei. Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses[J]. Explosion And Shock Waves, 2019, 39(8): 083107. doi: 10.11883/bzycj-2018-0391 |
[14] | Wang Lili, Hu Shisheng, Yang Liming, Dong Xinlong, Wang Hui. Talk about dynamic strength and damage evolution[J]. Explosion And Shock Waves, 2017, 37(2): 169-179. doi: 10.11883/1001-1455(2017)02-0169-11 |
[15] | Hong Liang, Jin Zhi-ren, Deng Zong-wei. Bar diameter effect of minimum loading strain rate in granite impacting tests by SHPB[J]. Explosion And Shock Waves, 2014, 34(3): 328-333. doi: 10.11883/1001-1455(2014)03-0328-06 |
[16] | JinJie-fang, LiXi-bing, ChangJun-ran, TaoWei, QiuCan. Stress-straincurveandstresswavecharacteristicsof rocksubjectedtocyclicimpactloading[J]. Explosion And Shock Waves, 2013, 33(6): 613-619. doi: 10.11883/1001-1455(2013)06-0613-07 |
[17] | LU Yu-bin. InterfacialfrictioneffectinSHPBexperimentsofplastics[J]. Explosion And Shock Waves, 2012, 32(1): 15-22. doi: 10.11883/1001-1455(2012)01-0015-08 |
[18] | WU Xu-tao, HU Shi-sheng, TIAN Jie. Stress-measurement method by PVDF gauge and its application to impact test for concrete[J]. Explosion And Shock Waves, 2007, 27(5): 411-415. doi: 10.11883/1001-1455(2007)05-0411-05 |
[19] | WANG Li-li, DONG Xin-long, SUN Zi-jian. Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution[J]. Explosion And Shock Waves, 2006, 26(3): 193-198. doi: 10.11883/1001-1455(2006)03-0193-06 |
[20] | WANG Xiao-yan, LU Fang-yun, LIN Yu-liang. Study on interfacial friction effect in the SHPB tests[J]. Explosion And Shock Waves, 2006, 26(2): 134-139. doi: 10.11883/1001-1455(2006)02-0134-06 |
1. | 李贝贝,沈锋,王静峰,王元清,莫帅,欧阳元文. 高强铝合金箱形偏压柱稳定性能研究. 建筑结构学报. 2025(02): 201-210 . ![]() | |
2. | 翟旭. 高强铝合金混凝土组合柱轴压性能研究. 特种结构. 2025(02): 59-64 . ![]() | |
3. | 张伟,赵亮,陈峰,陶志刚,崔龙飞. 静力荷载作用下微观负泊松比锚杆的本构模型. 河南科技大学学报(自然科学版). 2024(01): 62-67+8 . ![]() | |
4. | 李博,郭志伟,朱航,杜宇航,侯玥,刘强,赵晓刚. 基于有限元分析的走刀策略对铝合金薄壁筋铣削仿真工艺研究. 工具技术. 2024(02): 66-73 . ![]() | |
5. | 王成华,蒋雯霄,杨阳,李磊. 一种虚拟试验架构下的舱段结构建模与承载破坏模拟技术. 导弹与航天运载技术(中英文). 2024(02): 74-79+99 . ![]() | |
6. | 杨泽寰,孟繁霖,张先锋,刘闯,谈梦婷,熊玮. 高速动能弹体冲击毁伤金属厚靶缩比试验与仿真. 北京理工大学学报. 2024(06): 565-578 . ![]() | |
7. | 陈建良,杨璞,李继承,陈刚,邓宏见,范志庚. 大口径锥头弹体高速倾斜入水偏转规律数值模拟. 爆炸与冲击. 2024(07): 68-82 . ![]() | |
8. | 陈伊铭,李泽文,唐杰,沈中华. 激光与外载荷联合加载7075铝合金的实验研究. 激光技术. 2023(01): 13-18 . ![]() | |
9. | 邓云飞,胡昂,任光辉,魏刚. 7050-T7351铝合金力学性能测试及本构模型研究. 材料导报. 2023(03): 192-198 . ![]() | |
10. | 冯毅,万鑫铭,周佳,许伟,高翔,方刚,余春丽,张钧萍,申娟,黄利,于航. 汽车用先进高强钢板材断裂性能研究进展. 汽车工程学报. 2023(03): 273-297 . ![]() | |
11. | 宗亮,刘衡,陈颖,王中兴. 7A04铝合金高周疲劳性能研究. 建筑结构学报. 2023(08): 225-233 . ![]() | |
12. | 李志强,焦燏烽,刘小蔚. 7系高强铝合金力学性能研究现状及发展趋势. 建筑结构. 2023(S2): 1215-1221 . ![]() | |
13. | 支新航,王元清,李贝贝,张颖,范圣刚,欧阳元文. 7075-T6高强铝合金轴心受压构件局部稳定试验研究. 天津大学学报(自然科学与工程技术版). 2022(07): 745-753 . ![]() | |
14. | 周伦,苏兴亚,敬霖,邓贵德,赵隆茂. 6061-T6铝合金动态拉伸本构关系及失效行为. 爆炸与冲击. 2022(09): 113-124 . ![]() | |
15. | 李贝贝,王元清,支新航,王中兴,袁焕鑫,欧阳元文. 我国7×××系高强铝合金及其研究进展. 建筑钢结构进展. 2021(07): 1-10 . ![]() | |
16. | 邓云飞,张永,吴华鹏,曾宪智. 6061-T651铝合金动态力学性能及J-C本构模型的修正. 机械工程学报. 2020(20): 74-81 . ![]() | |
17. | 魏刚,张伟,邓云飞. 基于J-C模型的45钢本构参数识别及验证. 振动与冲击. 2019(05): 173-178 . ![]() | |
18. | 陈书剑,程迪,肖守讷,朱涛,阳光武,杨冰,冯悦. 列车车体SUS301L-HT不锈钢动态力学性能及其对结构吸能特性的影响. 中国机械工程. 2019(17): 2058-2065 . ![]() | |
19. | 陈琳,杜太生,肖新科,葛睿聪. 7075铝靶对卵头弹撞击的试验和数值模拟研究. 兵器材料科学与工程. 2019(05): 27-32 . ![]() | |
20. | 魏刚,张伟,邓云飞. 高强38CrSi钢力学性能测试及本构关系研究. 振动与冲击. 2019(18): 179-184 . ![]() | |
21. | 李进军,丁永君,王衬心,李振宇,荣彬,万纹宇. 7A04-T6铝合金圆管的材性试验和本构模型研究. 钢结构(中英文). 2019(12): 35-39 . ![]() | |
22. | 汪建强,郭丽丽,李永兵,李冰,王长峰. 6016铝合金板材室温成形性及其数值模拟. 塑性工程学报. 2018(02): 43-51 . ![]() | |
23. | 胡静,祝家奇,张银波,李剑峰,邓云飞. 碎片对铝合金薄板抗侵彻性能影响数值仿真研究. 固体力学学报. 2018(05): 504-512 . ![]() | |
24. | 贾东,黄西成,胡文军,张方举. 基于J-C模型的镁合金MB2动静态拉伸破坏行为. 爆炸与冲击. 2017(06): 1010-1016 . ![]() | |
25. | 惠旭龙,白春玉,刘小川,牟让科,王计真. 宽应变率范围下2A16-T4铝合金动态力学性能. 爆炸与冲击. 2017(05): 871-878 . ![]() | |
26. | 李剑峰,邓云飞,贾宝惠. 弹体边界效应对2A12薄靶抗撞击性能影响的数值模拟. 高压物理学报. 2017(01): 42-50 . ![]() | |
27. | 郑红伟,陈长海,侯海量,朱锡,李典. 破片尺寸对空爆冲击波及破片传播过程的影响仿真分析. 中国舰船研究. 2017(06): 73-80 . ![]() | |
28. | 王晓鹏,王雨时,闻泉,张志彪. 弹丸正侵彻有限厚混凝土靶过程引信前冲过载经验公式. 探测与控制学报. 2017(05): 14-19 . ![]() | |
29. | 司马玉洲,肖新科,王要沛,张伟. 7A04-T6高强铝合金板对平头杆弹抗侵彻行为的试验与数值模拟研究. 振动与冲击. 2017(11): 1-7+13 . ![]() | |
30. | 徐小东,李华良,张涛. 基于夏比冲击试验的材料失效模型参数. 爆炸与冲击. 2016(01): 57-63 . ![]() | |
31. | 刘云峰,周晓东,赵晓利,石蔚春,甘小红. 基于Autodyn的单兵平衡抛射武器弹筒分离过程研究. 弹箭与制导学报. 2016(02): 61-63 . ![]() | |
32. | 杨铁江. 7075铝合金动态试验及其本构关系研究. 制造业自动化. 2016(11): 28-32 . ![]() | |
33. | 王元清,王中兴,胡晓光,韩军科,邢海军. 7A04高强铝合金L形截面柱轴压整体稳定性能试验研究. 建筑结构学报. 2016(06): 174-182 . ![]() | |
34. | 王元清,王中兴,胡晓光,邢海军,石永久. 循环荷载作用下高强铝合金本构关系试验研究. 土木工程学报. 2016(S2): 1-7 . ![]() | |
35. | 毕京宇,丛明,韩玉婷,刘冬,赵鑫. ADC12铝硅合金Johnson-Cook本构模型的研究. 组合机床与自动化加工技术. 2016(09): 1-4+8 . ![]() | |
36. | 殷永亮,闻泉,王雨时. 迫击炮弹对土壤目标的侵彻规律仿真. 探测与控制学报. 2015(03): 60-65 . ![]() | |
37. | 殷永亮,闻泉,王雨时,张志彪. 迫弹射击水面引信正面水压和前冲过载规律. 探测与控制学报. 2015(06): 41-45+50 . ![]() | |
38. | 肖新科,王要沛,王爽,张伟. 应力状态在球形弹丸撞击6061-T6铝薄靶弹道行为数值预报的作用. 振动与冲击. 2015(22): 87-91 . ![]() | |
39. | 周梦成,冯飞,胡建华,雷雨,何鹏,黄尚宇,邹方利. AZ31B镁合金断裂应变与应力三轴度的关系研究. 中国机械工程. 2015(05): 694-698 . ![]() | |
40. | 杨超,朱涛,肖守讷. 列车车体铝合金动态力学性能及其对吸能的影响. 中南大学学报(自然科学版). 2015(07): 2744-2749 . ![]() | |
41. | 晏宁,康国政,朱志武. 5083H111铝合金宽应变率拉伸动态本构模型. 固体力学学报. 2014(03): 259-265 . ![]() | |
42. | 高宁,朱志武. 铝合金应变率效应综述及其机理研究. 应用数学和力学. 2014(S1): 208-212 . ![]() | |
43. | 刘富,张嘉振,童明波,胡忠民,郭亚洲,臧曙光. 2024-T3铝合金动力学实验及其平板鸟撞动态响应分析. 振动与冲击. 2014(04): 113-118 . ![]() | |
44. | 张伟,魏刚,肖新科. 2A12铝合金本构关系和失效模型. 兵工学报. 2013(03): 276-282 . ![]() | |
45. | Wei Zhang,Gang Wei,Xin-Ke Xiao,Zi-Tao Guo. Effect of Fracture Criteria on Taylor Impact Fracture. Journal of Harbin Institute of Technology. 2013(01): 63-67 . ![]() |