ZHANG Wei, XIAO Xin-ke, WEI Gang. Constitutiverelationandfracturemodelof7A04aluminumalloy[J]. Explosion And Shock Waves, 2011, 31(1): 81-87. doi: 10.11883/1001-1455(2011)01-0081-07
Citation: WANG Yu, ZHAI Cheng, TANG Wei, SHI Kelong. Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings[J]. Explosion And Shock Waves, 2023, 43(6): 063102. doi: 10.11883/bzycj-2022-0248

Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings

doi: 10.11883/bzycj-2022-0248
  • Received Date: 2022-06-07
  • Rev Recd Date: 2022-09-13
  • Available Online: 2022-09-14
  • Publish Date: 2023-06-05
  • The formation of complex fracture networks in the shale subjected to cyclic impact loading is an important scientific problem for water-free fracturing technologies of shale reservoirs, such as explosive fracturing and high-energy gas fracturing. Two cyclic impact experiments based on a split Hopkinson pressure bar (SHPB) system were conducted on the freshly exposed black mud shale taken from the Wufeng Formation-Longmaxi Formation in Changning County, Sichuan Province, to investigate the kinetic response and damage evolution characteristics of the shale under different cyclic impact gas pressure and different cyclic impact gas pressure gradients, respectively, and to reveal the energy evolution law of the cyclic impact shale using different impact gas pressure gradients under the condition of controlling the constant total incident energy. The main conclusions are as follows. With the increase in impact pressure, the number of impacts required to rupture the specimen decreases, and the fragmentation and peak stress increase. The specimen undergoes cyclic impact showing the mechanical response characteristics of compaction first and then gradual damage. The damage degree of the shale specimens during cyclic impact was calculated by a dynamic damage model based on the Weibull distribution, and the results show that the damage of the specimen gradually changes from slow deterioration to sudden damage by increasing the cyclic impact pressure. Different cyclic impact experiments with different impact gas pressure gradients were conducted. The results show that under the condition of constant total incident energy, different cyclic incident energy gradients could produce different damage effects, and the energy absorption ratio of the negative or positive gas pressure gradient of cycle impact is greater than that of the zero ones. The absolute value of the pressure gradient shows a positive correlation with the energy absorption ratio. It indicates that under the condition of constant total impact energy, increasing the absolute value of the cyclic impact gradient can produce a better damage effect. The findings of the shale cyclic impact experiments can provide theoretical support for the technological design of multi-stage pulsed high-energy-gas-fracturing.
  • [1]
    贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景 [J]. 石油勘探与开发, 2012, 39(2): 129–136.

    JIA C Z, ZHENG M, ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development [J]. Petroleum Exploration and Development, 2012, 39(2): 129–136.
    [2]
    TAYLOUR G B, RIFAI H S, HILDENBRAND Z L, et al. Elucidating hydraulic fracturing impacts on ground water quality using a regional geospatial statistical modeling approach [J]. Science of the Total Environment, 2016, 545: 114–126.
    [3]
    韩烈祥, 朱丽华, 孙海芳, 等. LPG无水压裂技术 [J]. 天然气工业, 2014, 34(6): 48–54.

    HAN L X, ZHU L H, SUN H F, et al. LPG waterless fracturing technology [J]. Nature Gas Industry, 2014, 34(6): 48–54.
    [4]
    翟成, 郑仰峰, 孙勇, 等. 一种页岩储层甲烷原位燃爆压裂与助燃剂安全投放协同控制方法: CN112761588B [P]. 2022-02-08.
    [5]
    刘厅, 翟成, 赵洋, 等. 基于LF-NMR的页岩多尺度孔裂隙应力敏感性评价 [J]. 煤炭学报, 2021, 46(S2): 887–897. DOI: 10.13225/j.cnki.jccs.2021.0852.

    LIU T, ZHAI C, ZHAO Y, et al. Evaluation on stress sensitivity of multiscale pore and fracture in shale based on LF-NMR [J]. Journal of China Coal Society, 2021, 46(S2): 887–897. DOI: 10.13225/j.cnki.jccs.2021.0852.
    [6]
    JUN L, CAO L Y, GUO B Y, et al. Prediction of productivity of high energy gas-fractured oil wells [J]. Journal of Petroleum Science and Engineering, 2018, 160: 510–518. DOI: 10.1016/j.petrol.2017.10.071.
    [7]
    陈莉静, 冯纪米, 吴小超. 高能气体瞬态破岩特性试验研究 [J]. 岩石力学与工程学报, 2020, 39(S2): 3271–3277.

    CHEN L J, FENG J M, WU X C. Experimental research on transient rock breaking characteristics of high-energy gas [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3271–3277.
    [8]
    任山, 黄禹忠, 林永茂, 等. 燃爆诱导及酸处理新技术在川西须家河气藏的应用 [J]. 钻采工艺, 2009, 32(1): 31–32.

    REN S, HUANG Y Z, LIN Y M, et al. Application of propagated blast and acid treatment technology in Chuanxi Xujiahe gas reservoir [J]. Drilling and production Technology, 2009, 32(1): 31–32.
    [9]
    任杨, 吴飞鹏, 蒲春生, 等. 长脉冲燃爆压裂复合燃速火药配方优化与应用 [J]. 科学技术与工程, 2014, 14(24): 68–73.

    REN Y, WU F P, PU C S, et al. The optimization and application of composite burning rate gunpowder formula of long pulse explosive fracturing [J]. Science Technology and Engineering, 2014, 14(24): 68–73.
    [10]
    吴飞鹏, 徐尔斯, 尉雪梅, 等. 燃爆诱导水力压裂多裂缝耦合起裂规律 [J]. 天然气工业, 2018, 38(11): 65–72.

    WU F P, XU E S, WEI X M, et al. Laws of multi-fracture coupling initiation during blasting induced hydraulic fracturing [J]. Nature Gas Industry, 2018, 38(11): 65–72.
    [11]
    吴飞鹏, 蒲春生, 陈德春, 等. 多级脉冲爆燃压裂作用过程耦合模拟 [J]. 石油勘探与开发, 2014, 41(5): 605–611.

    WU F P, PU C S, CHEN D C, et al. Coupling simulation of multistage pulse conflagration compression fracturing [J]. Petroleum Exploration and Development, 2014, 41(5): 605–611.
    [12]
    田怡萍. 页岩爆燃压裂下裂缝扩展模式数值模拟研究[D]. 四川绵阳: 西南科技大学, 2019: 1–8.

    TIAN Y P. Numerical simulation study on crack propagation mode under shale deflagration fracturing[D]. Mianyang, Sichuan, China: Southwest University of Science and Technology,2019:1–8
    [13]
    刘洪志. 多级燃爆压裂裂缝扩展规律模拟研究[D]. 山东青岛: 中国石油大学(华东), 2017: 2–9.

    LIU H Z. Simulation on the fracture propagation laws of multi-stage blasting fracturing[D]. Qingdao, Shandong, China: China University of Petroleum (East China), 2017:2–9
    [14]
    夏昌敬, 谢和平, 鞠杨. 孔隙岩石的SHPB试验研究 [J]. 岩石力学与工程学报, 2006, 25(5): 896–900.

    XIA C J, XIE H P, JU Y. SHPB test on porous rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 896–900.
    [15]
    许金余, 吕晓聪, 张军, 等. 循环冲击作用下围压对斜长角闪岩动态特性的影响研究 [J]. 振动与冲击, 2010, 29(8): 60–63.

    XU J Y, LYU X C, ZHANG J, et al. Research on dynamic mechanical performance of amphibolite under cyclical impact loadings at different confining pressures [J]. Journal of Vibration and Shock, 2010, 29(8): 60–63.
    [16]
    甘德清, 田晓曦, 刘志义, 等. 循环冲击状态下砂岩力学及损伤特性研究 [J]. 中国矿业, 2021, 30(3): 203–211.

    GAN D Q, TIAN X X, LIU Z Y, et al. Study on mechanics and damage characteristics of sandstone under cyclic impact state [J]. China Mining Magazine, 2021, 30(3): 203–211.
    [17]
    SHAN R L, JIANG Y S, LI B Q. Obtaining dynamic complete stress–strain curves for rock using the split Hopkinson pressure bar technique [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6): 983–992. DOI: 10.1016/S1365-1609(00)00031-9.
    [18]
    金解放, 李夕兵, 常军然, 等. 循环冲击作用下岩石应力应变曲线及应力波特性 [J]. 爆炸与冲击, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.

    JIN J F, LI X B, CHANG J R, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings [J]. Explosion and Shock Waves, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
    [19]
    谭玉叶, 汪杰, 宋卫东, 等. 循环冲击下胶结充填体动载力学特性试验研究 [J]. 采矿与安全工程学报, 2019, 36(1): 184–190.

    TAN Y Y, WANG J, SONG W D, et al. Experimental study on mechanical properties of cemented tailings backfill under cycle dynamic loading test [J]. Journal of Mining & Safety Engineering, 2019, 36(1): 184–190.
    [20]
    金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [21]
    金解放, 李夕兵, 殷志强, 等. 轴压和循环冲击次数对砂岩动态力学特性的影响 [J]. 煤炭学报, 2012, 37(6): 923–930.

    JIN J F, LI X B, YIN Z Q, et al. Effects of axial pressure and number of cyclic impacts on dynamic mechanical characteristics of sandstone [J]. Journal of China Coal Society, 2012, 37(6): 923–930.
    [22]
    吕晓聪, 许金余, 赵德辉, 等. 冲击荷载循环作用下砂岩动态力学性能的围压效应研究 [J]. 工程力学, 2011, 28(1): 138–144.

    LYU X C, XU J Y, ZHAO D H, et al. Research on confining pressure effect of sandstone dynamic mechanical performance under the cyclical impact loadings [J]. Engineering Mechanics, 2011, 28(1): 138–144.
    [23]
    余永强, 张文龙, 范利丹, 等. 冲击荷载下煤系砂岩应变率效应及能量耗散特征 [J]. 煤炭学报, 2021, 46(7): 2281–2293.

    YU Y Q, ZHANG W L, FAN L D, er al. Study on strain rate effect and energy dissipation characteristics of coal measures sandstone under impact loading [J]. Journal of China Coal Society, 2021, 46(7): 2281–2293.
    [24]
    闫雷, 刘连生, 李仕杰, 等. 单轴循环冲击下弱风化花岗岩的损伤演化 [J]. 爆炸与冲击, 2020, 40(5): 053303. DOI: 10.11883/bzycj-2019-0354.

    YAN L, LIU L S, LI S J, et al. Damage evolution of weakly-weathered granite under uniaxial cyclic impact [J]. Explosion and Shock Waves, 2020, 40(5): 053303. DOI: 10.11883/bzycj-2019-0354.
    [25]
    杜晶. 不同长径比下岩石冲击动力学特性研究[D]. 长沙: 中南大学, 2011: 51–72.

    DU J. Size effect on the dynamic mechanical properties under impact loads of rock [D]. Changsha, Hunan, China: Central South University, 2011:51-72.
    [26]
    孙清佩, 张志镇, 李培超, 等. 黑色页岩动载破坏的层理效应及损伤本构模型研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1319–1331. DOI: 10.13722/j.cnki.jrme.2018.1333.

    SUN Q P, ZHANG Z Z, LI P C, et al. Study on the bedding effect and damage constitutive model of black shale under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1319–1331. DOI: 10.13722/j.cnki.jrme.2018.1333.
    [27]
    单仁亮, 薛友松, 张倩. 岩石动态破坏的时效损伤本构模型 [J]. 岩石力学与工程学报, 2003, 22(11): 1771–1776.

    SHAN R L, XUE Y S, ZHANG Q. Time dependent damage model of rock under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1771–1776.
    [28]
    杨圣奇, 徐卫亚, 韦立德, 等. 单轴压缩下岩石损伤统计本构模型与试验研究 [J]. 河海大学学报(自然科学版), 2004, 32(3): 200–203.

    YANG S Q, XU W Y, WEI L D, et al. Statistical constitutive model for rock damage under uniaxial compression and its experimental study [J]. Journal of Hohai University (Natural Sciences), 2004, 32(3): 200–203.
    [29]
    朱晶晶. 循环冲击载荷下岩石力学特性与损伤模型的试验研究[D]. 长沙: 中南大学, 2012.

    ZHU J J. Experimental study of rock mechanical properties and damage model under cyclical dynamic loads [D].Changsha, Hunan, China: Central South University, 2012.
    [30]
    朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究 [J]. 岩土工程学报, 2013, 35(3): 531–539.

    ZHU J J, LI X B, GONG F Q, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531–539.
    [31]
    黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究 [J]. 煤炭学报, 2011, 36(12): 2007–2011.

    LI L Y, XU Z Q, XIE H P, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities [J]. Journal of China Coal Society, 2011, 36(12): 2007–2011.
    [32]
    黎立云, 谢和平, 鞠杨, 等. 岩石可释放应变能及耗散能的实验研究 [J]. 工程力学, 2011, 28(3): 35–40.

    LI L Y, XIE H P, JU Y, et al. Experimental investigations of releasable energy and dissipative energy within rock [J]. Engineering Mechanics, 2011, 28(3): 35–40.
  • Relative Articles

    [1]WANG Wei, LIU Ze, NIU Qinghe, CHANG Jiangfang, YUAN Wei, ZHENG Yongxiang, SHANG Songhua. Characteristics of fracture propagation and permeability response of sandstone under cyclic impact effect[J]. Explosion And Shock Waves, 2025, 45(6): 061421. doi: 10.11883/bzycj-2024-0346
    [2]LIU Kangqi, LIU Hongyan, ZHOU Yuezhi, XUE Lei, ZHANG Guangxiong. Dynamic mechanical behaviors of single-jointed rock mass under cyclic impact loadings[J]. Explosion And Shock Waves, 2025, 45(6): 061423. doi: 10.11883/bzycj-2024-0353
    [3]YANG Guoliang, BI Jingjiu, DONG Zhiwen, ZHAO Tongde, ZHAO Jianyu, ZHAO Kangpu. Fracturing mechanism of bedding shale under directional fracture-controlled blasting[J]. Explosion And Shock Waves, 2024, 44(6): 061001. doi: 10.11883/bzycj-2023-0336
    [4]ZHANG Rongrong, SHEN Yonghui, MA Dongdong, PING Qi, YANG Yi. Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact[J]. Explosion And Shock Waves, 2024, 44(8): 081443. doi: 10.11883/bzycj-2023-0449
    [5]WANG Zhiliang, WANG Dawei, WANG Shumin, WU Xutao. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading[J]. Explosion And Shock Waves, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243
    [6]ZHANG Tao, YU Liyuan, SU Haijian, LUO Ning, WEI Jiangbo. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation[J]. Explosion And Shock Waves, 2022, 42(1): 013103. doi: 10.11883/bzycj-2021-0089
    [7]CHEN Haihua, ZHANG Xianfeng, LIU Chuang, LIN Kunfu, XIONG Wei, TAN Mengting. Research progress on impact deformation behavior of high-entropy alloys[J]. Explosion And Shock Waves, 2021, 41(4): 041402. doi: 10.11883/bzycj-2020-0414
    [8]ZHANG Mingtao, WANG Wei, WANG Qizhi, ZHANG Siyi. Dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiments[J]. Explosion And Shock Waves, 2021, 41(9): 093102. doi: 10.11883/bzycj-2020-0288
    [9]YANG Guoliang, BI Jingjiu, GUO Weimin, ZHANG Zhifei, HAN Zimo, CHENG Shuaijie. Experimental study on the effect of loading angle on crack propagation in bedding shale[J]. Explosion And Shock Waves, 2021, 41(9): 093101. doi: 10.11883/bzycj-2021-0097
    [10]CAO Xiang, TANG Jiani, WANG Zhu, ZHENG Yuxuan, ZHOU Fenghua. Effect of damage evolution on the fragmentation process of ductile metals[J]. Explosion And Shock Waves, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041
    [11]JIANG Zhaoxiu, GAO Guangfa, WANG Yonggang. Discrete element simulation on dynamic response and damage evolution in porous ferroelectric ceramics under shock compression[J]. Explosion And Shock Waves, 2020, 40(5): 053103. doi: 10.11883/bzycj-2019-0410
    [12]YAN Lei, LIU Liansheng, LI Shijie, YANG Daoxue, LIU Wei. Damage evolution of weakly-weathered granite under uniaxial cyclic impact[J]. Explosion And Shock Waves, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354
    [13]DENG Zhengding, XIANG Shuai, ZHOU Jianrong, WANG Guanshi, WANG Yuemei. Rate correlation and deformation of damage evolutionof non-penetrating fractured rock masses[J]. Explosion And Shock Waves, 2019, 39(8): 083107. doi: 10.11883/bzycj-2018-0391
    [14]Wang Lili, Hu Shisheng, Yang Liming, Dong Xinlong, Wang Hui. Talk about dynamic strength and damage evolution[J]. Explosion And Shock Waves, 2017, 37(2): 169-179. doi: 10.11883/1001-1455(2017)02-0169-11
    [15]Hong Liang, Jin Zhi-ren, Deng Zong-wei. Bar diameter effect of minimum loading strain rate in granite impacting tests by SHPB[J]. Explosion And Shock Waves, 2014, 34(3): 328-333. doi: 10.11883/1001-1455(2014)03-0328-06
    [16]JinJie-fang, LiXi-bing, ChangJun-ran, TaoWei, QiuCan. Stress-straincurveandstresswavecharacteristicsof rocksubjectedtocyclicimpactloading[J]. Explosion And Shock Waves, 2013, 33(6): 613-619. doi: 10.11883/1001-1455(2013)06-0613-07
    [17]LU Yu-bin. InterfacialfrictioneffectinSHPBexperimentsofplastics[J]. Explosion And Shock Waves, 2012, 32(1): 15-22. doi: 10.11883/1001-1455(2012)01-0015-08
    [18]WU Xu-tao, HU Shi-sheng, TIAN Jie. Stress-measurement method by PVDF gauge and its application to impact test for concrete[J]. Explosion And Shock Waves, 2007, 27(5): 411-415. doi: 10.11883/1001-1455(2007)05-0411-05
    [19]WANG Li-li, DONG Xin-long, SUN Zi-jian. Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution[J]. Explosion And Shock Waves, 2006, 26(3): 193-198. doi: 10.11883/1001-1455(2006)03-0193-06
    [20]WANG Xiao-yan, LU Fang-yun, LIN Yu-liang. Study on interfacial friction effect in the SHPB tests[J]. Explosion And Shock Waves, 2006, 26(2): 134-139. doi: 10.11883/1001-1455(2006)02-0134-06
  • Cited by

    Periodical cited type(45)

    1. 李贝贝,沈锋,王静峰,王元清,莫帅,欧阳元文. 高强铝合金箱形偏压柱稳定性能研究. 建筑结构学报. 2025(02): 201-210 .
    2. 翟旭. 高强铝合金混凝土组合柱轴压性能研究. 特种结构. 2025(02): 59-64 .
    3. 张伟,赵亮,陈峰,陶志刚,崔龙飞. 静力荷载作用下微观负泊松比锚杆的本构模型. 河南科技大学学报(自然科学版). 2024(01): 62-67+8 .
    4. 李博,郭志伟,朱航,杜宇航,侯玥,刘强,赵晓刚. 基于有限元分析的走刀策略对铝合金薄壁筋铣削仿真工艺研究. 工具技术. 2024(02): 66-73 .
    5. 王成华,蒋雯霄,杨阳,李磊. 一种虚拟试验架构下的舱段结构建模与承载破坏模拟技术. 导弹与航天运载技术(中英文). 2024(02): 74-79+99 .
    6. 杨泽寰,孟繁霖,张先锋,刘闯,谈梦婷,熊玮. 高速动能弹体冲击毁伤金属厚靶缩比试验与仿真. 北京理工大学学报. 2024(06): 565-578 .
    7. 陈建良,杨璞,李继承,陈刚,邓宏见,范志庚. 大口径锥头弹体高速倾斜入水偏转规律数值模拟. 爆炸与冲击. 2024(07): 68-82 . 本站查看
    8. 陈伊铭,李泽文,唐杰,沈中华. 激光与外载荷联合加载7075铝合金的实验研究. 激光技术. 2023(01): 13-18 .
    9. 邓云飞,胡昂,任光辉,魏刚. 7050-T7351铝合金力学性能测试及本构模型研究. 材料导报. 2023(03): 192-198 .
    10. 冯毅,万鑫铭,周佳,许伟,高翔,方刚,余春丽,张钧萍,申娟,黄利,于航. 汽车用先进高强钢板材断裂性能研究进展. 汽车工程学报. 2023(03): 273-297 .
    11. 宗亮,刘衡,陈颖,王中兴. 7A04铝合金高周疲劳性能研究. 建筑结构学报. 2023(08): 225-233 .
    12. 李志强,焦燏烽,刘小蔚. 7系高强铝合金力学性能研究现状及发展趋势. 建筑结构. 2023(S2): 1215-1221 .
    13. 支新航,王元清,李贝贝,张颖,范圣刚,欧阳元文. 7075-T6高强铝合金轴心受压构件局部稳定试验研究. 天津大学学报(自然科学与工程技术版). 2022(07): 745-753 .
    14. 周伦,苏兴亚,敬霖,邓贵德,赵隆茂. 6061-T6铝合金动态拉伸本构关系及失效行为. 爆炸与冲击. 2022(09): 113-124 . 本站查看
    15. 李贝贝,王元清,支新航,王中兴,袁焕鑫,欧阳元文. 我国7×××系高强铝合金及其研究进展. 建筑钢结构进展. 2021(07): 1-10 .
    16. 邓云飞,张永,吴华鹏,曾宪智. 6061-T651铝合金动态力学性能及J-C本构模型的修正. 机械工程学报. 2020(20): 74-81 .
    17. 魏刚,张伟,邓云飞. 基于J-C模型的45钢本构参数识别及验证. 振动与冲击. 2019(05): 173-178 .
    18. 陈书剑,程迪,肖守讷,朱涛,阳光武,杨冰,冯悦. 列车车体SUS301L-HT不锈钢动态力学性能及其对结构吸能特性的影响. 中国机械工程. 2019(17): 2058-2065 .
    19. 陈琳,杜太生,肖新科,葛睿聪. 7075铝靶对卵头弹撞击的试验和数值模拟研究. 兵器材料科学与工程. 2019(05): 27-32 .
    20. 魏刚,张伟,邓云飞. 高强38CrSi钢力学性能测试及本构关系研究. 振动与冲击. 2019(18): 179-184 .
    21. 李进军,丁永君,王衬心,李振宇,荣彬,万纹宇. 7A04-T6铝合金圆管的材性试验和本构模型研究. 钢结构(中英文). 2019(12): 35-39 .
    22. 汪建强,郭丽丽,李永兵,李冰,王长峰. 6016铝合金板材室温成形性及其数值模拟. 塑性工程学报. 2018(02): 43-51 .
    23. 胡静,祝家奇,张银波,李剑峰,邓云飞. 碎片对铝合金薄板抗侵彻性能影响数值仿真研究. 固体力学学报. 2018(05): 504-512 .
    24. 贾东,黄西成,胡文军,张方举. 基于J-C模型的镁合金MB2动静态拉伸破坏行为. 爆炸与冲击. 2017(06): 1010-1016 . 本站查看
    25. 惠旭龙,白春玉,刘小川,牟让科,王计真. 宽应变率范围下2A16-T4铝合金动态力学性能. 爆炸与冲击. 2017(05): 871-878 . 本站查看
    26. 李剑峰,邓云飞,贾宝惠. 弹体边界效应对2A12薄靶抗撞击性能影响的数值模拟. 高压物理学报. 2017(01): 42-50 .
    27. 郑红伟,陈长海,侯海量,朱锡,李典. 破片尺寸对空爆冲击波及破片传播过程的影响仿真分析. 中国舰船研究. 2017(06): 73-80 .
    28. 王晓鹏,王雨时,闻泉,张志彪. 弹丸正侵彻有限厚混凝土靶过程引信前冲过载经验公式. 探测与控制学报. 2017(05): 14-19 .
    29. 司马玉洲,肖新科,王要沛,张伟. 7A04-T6高强铝合金板对平头杆弹抗侵彻行为的试验与数值模拟研究. 振动与冲击. 2017(11): 1-7+13 .
    30. 徐小东,李华良,张涛. 基于夏比冲击试验的材料失效模型参数. 爆炸与冲击. 2016(01): 57-63 . 本站查看
    31. 刘云峰,周晓东,赵晓利,石蔚春,甘小红. 基于Autodyn的单兵平衡抛射武器弹筒分离过程研究. 弹箭与制导学报. 2016(02): 61-63 .
    32. 杨铁江. 7075铝合金动态试验及其本构关系研究. 制造业自动化. 2016(11): 28-32 .
    33. 王元清,王中兴,胡晓光,韩军科,邢海军. 7A04高强铝合金L形截面柱轴压整体稳定性能试验研究. 建筑结构学报. 2016(06): 174-182 .
    34. 王元清,王中兴,胡晓光,邢海军,石永久. 循环荷载作用下高强铝合金本构关系试验研究. 土木工程学报. 2016(S2): 1-7 .
    35. 毕京宇,丛明,韩玉婷,刘冬,赵鑫. ADC12铝硅合金Johnson-Cook本构模型的研究. 组合机床与自动化加工技术. 2016(09): 1-4+8 .
    36. 殷永亮,闻泉,王雨时. 迫击炮弹对土壤目标的侵彻规律仿真. 探测与控制学报. 2015(03): 60-65 .
    37. 殷永亮,闻泉,王雨时,张志彪. 迫弹射击水面引信正面水压和前冲过载规律. 探测与控制学报. 2015(06): 41-45+50 .
    38. 肖新科,王要沛,王爽,张伟. 应力状态在球形弹丸撞击6061-T6铝薄靶弹道行为数值预报的作用. 振动与冲击. 2015(22): 87-91 .
    39. 周梦成,冯飞,胡建华,雷雨,何鹏,黄尚宇,邹方利. AZ31B镁合金断裂应变与应力三轴度的关系研究. 中国机械工程. 2015(05): 694-698 .
    40. 杨超,朱涛,肖守讷. 列车车体铝合金动态力学性能及其对吸能的影响. 中南大学学报(自然科学版). 2015(07): 2744-2749 .
    41. 晏宁,康国政,朱志武. 5083H111铝合金宽应变率拉伸动态本构模型. 固体力学学报. 2014(03): 259-265 .
    42. 高宁,朱志武. 铝合金应变率效应综述及其机理研究. 应用数学和力学. 2014(S1): 208-212 .
    43. 刘富,张嘉振,童明波,胡忠民,郭亚洲,臧曙光. 2024-T3铝合金动力学实验及其平板鸟撞动态响应分析. 振动与冲击. 2014(04): 113-118 .
    44. 张伟,魏刚,肖新科. 2A12铝合金本构关系和失效模型. 兵工学报. 2013(03): 276-282 .
    45. Wei Zhang,Gang Wei,Xin-Ke Xiao,Zi-Tao Guo. Effect of Fracture Criteria on Taylor Impact Fracture. Journal of Harbin Institute of Technology. 2013(01): 63-67 .

    Other cited types(50)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (655) PDF downloads(216) Cited by(95)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return