Volume 43 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
CHEN Hao, LU Hao, SUN Shanzheng, XIONG Ziming, YUE Songlin, WANG Derong. Failure law of shallow buried reinforced concrete arch structure under secondary explosion of conventional weapons[J]. Explosion And Shock Waves, 2023, 43(8): 085104. doi: 10.11883/bzycj-2022-0260
Citation: CHEN Hao, LU Hao, SUN Shanzheng, XIONG Ziming, YUE Songlin, WANG Derong. Failure law of shallow buried reinforced concrete arch structure under secondary explosion of conventional weapons[J]. Explosion And Shock Waves, 2023, 43(8): 085104. doi: 10.11883/bzycj-2022-0260

Failure law of shallow buried reinforced concrete arch structure under secondary explosion of conventional weapons

doi: 10.11883/bzycj-2022-0260
  • Received Date: 2022-06-15
  • Rev Recd Date: 2022-09-14
  • Available Online: 2022-10-13
  • Publish Date: 2023-08-31
  • The failure law of shallow buried reinforced concrete straight wall arch structure in soil under secondary explosion of conventional weapons was studied by explosion test and numerical simulation. Test structure adopts scale model based on similarity principle. Three groups of six shots were set up in the test. LS-DYNA is used to simulate the three groups of working conditions. By comparing the pressure of the measuring point in the soil, the speed of the structural measuring point, the structural deflection and other data, it is found that the simulation results are basically consistent with the experimental results. After comparing the numerical simulation results with the test, the numerical simulation conditions of the secondary explosion are expanded. When the comparison verifies that the numerical simulation is consistent with the experimental results, the secondary explosion conditions under the action of conventional weapons are simulated to study the dynamic response of structures under repeated impacts. Through calculation, it is found that when the proportional distance is set between 0.4-0.6 m/kg1/3, the damage of the structure is mainly caused by the overall damage. Combined with the macroscopic description of structural damage and the maximum deflection span ratio, the damage grade of the structure under the overall effect is divided. By discussing the initial damage of the structure and the failure law of reinforced concrete straight wall arch structure under different explosion sequences, the following conclusions are obtained: when the structure is damaged by explosion, such as cracking and bending, some concrete is out of work due to cracking or entering plasticity, resulting in the change of stiffness of the structure. The final damage degree of the structure is affected by the strike sequence, and the effect of initial explosion on the final damage of structure is greater than that of secondary explosion.
  • loading
  • [1]
    王辉明, 刘飞, 晏麓晖, 等. 接触爆炸荷载对钢筋混凝土梁的局部毁伤效应 [J]. 爆炸与冲击, 2020, 40(12): 121404. DOI: 10.11883/bzycj-2020-0171.

    WANG H M, LIU F, YAN L H, et al. Local damage effects of reinforced concrete beams under contact explosions [J]. Explosion and Shock Waves, 2020, 40(12): 121404. DOI: 10.11883/bzycj-2020-0171.
    [2]
    SHI Y C, HONG H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
    [3]
    YAO S J, ZHANG D, CHEN X G, et al. Experimental and numerical study on the dynamic response of RC slabs under blast loading [J]. Engineering Failure Analysis, 2016, 66: 120–129. DOI: 10.1016/j.engfailanal.2016.04.027.
    [4]
    汪维, 张舵, 卢芳云, 等. 钢筋混凝土楼板在爆炸荷载作用下破坏模式和抗爆性能分析 [J]. 兵工学报, 2010, 31(S1): 102–106.

    WANG W, ZHANG D, LU F Y, et al. Analysis for blast resistance and damage mode of reinforced concrete slab subjected to explosive load [J]. Acta Armamentarii, 2010, 31(S1): 102–106.
    [5]
    KIGER S A, DALLRIVA F D, HALL R L. Dynamic skin-friction effects on buried arches [J]. Journal of Structural Engineering, 1989, 115(7): 1768–1781. DOI: 10.1061/(ASCE)0733-9445(1989)115:7(1768).
    [6]
    孙惠香, 许金余, 李庆. 爆炸荷载作用下地下结构破坏模式研究 [J]. 弹箭与制导学报, 2011, 31(5): 89–92, 98.

    SUN H X, XU J Y, LI Q. The failure mode study of underground structure subjected to blast load [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(5): 89–92, 98.
    [7]
    李秀地, 郑颖人, 徐干成. 爆炸荷载作用下地下结构的震塌破坏模型研究 [J]. 爆破, 2006, 23(1): 6–9. DOI: 10.3963/j.issn.1001-487X.2006.01.002.

    LI X D, ZHENG Y R, XU G C. Spall model of underground structures under blast loads [J]. Blasting, 2006, 23(1): 6–9. DOI: 10.3963/j.issn.1001-487X.2006.01.002.
    [8]
    李秀地, 郑颖人, 徐干成. 爆炸荷载作用下地下结构的局部层裂分析 [J]. 地下空间与工程学报, 2005, 1(6): 853–855,877. DOI: 10.3969/j.issn.1673-0836.2005.06.010.

    LI X D, ZHENG Y R, XU G C. Spall response analysis of underground structures under blast loads [J]. Chinese Journal of Underground Space and Engineering, 2005, 1(6): 853–855,877. DOI: 10.3969/j.issn.1673-0836.2005.06.010.
    [9]
    邓春梅, 许金余, 沈刘军. 装药爆炸下地下拱形结构变形及破坏特征分析 [J]. 解放军理工大学学报(自然科学版), 2007(5): 534–537. DOI: 10.7666/j.issn.1009-3443.20070522.

    DENG C M, XU J Y, SHEN L J. Deformation and damage characteristics analysis of underground arch structure subjected to subsurface blast [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007(5): 534–537. DOI: 10.7666/j.issn.1009-3443.20070522.
    [10]
    霍庆, 王逸平, 刘光昆, 等. 地下拱形结构侧顶爆炸的破坏模式及影响因素 [J]. 兵工学报, 2021, 42(S1): 105–116.

    HUO Q, WANG Y P, LIU G K, et al. Failure mode and influencing factors of underground arched structure subjected to side top blast [J]. Acta Armamentarii, 2021, 42(S1): 105–116.
    [11]
    邓国强. 重复打击下防护结构地冲击初步分析[C]//第26届全国结构工程学术会议论文集(第Ⅲ册). 2017: 38−42.
    [12]
    戎志丹, 孙伟, 张云升, 等. 超高性能钢纤维混凝土抗二次接触爆炸性能研究 [J]. 华北水利水电学院学报, 2012, 33(6): 1–4. DOI: 10.19760/j.ncwu.zk.2012.06.001.

    RONG Z D, SUN W, ZHANG Y S, et al. Study on the characteristics of ultra-high performance steel fiber reinforced concrete under the second explosion [J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012, 33(6): 1–4. DOI: 10.19760/j.ncwu.zk.2012.06.001.
    [13]
    马林建, 赵岩, 张晓, 等. 二次爆炸荷载作用下钢筋混凝土梁动力响应分析 [J]. 工业建筑, 2011, 41(S1): 145–148. DOI: 10.13204/j.gyjz2011.s1.179.

    MA L J, ZHAO Y, ZHANG X, et al. Dynamic response analysis of reinforced concrete beams subjected to secondary impulsive loading [J]. Industrial Construction, 2011, 41(S1): 145–148. DOI: 10.13204/j.gyjz2011.s1.179.
    [14]
    马淑娜, 刘新宇, 马林建, 等. 常规武器在土中二次爆炸后对钢筋混凝土梁的动力响应分析[C]//.第2届全国工程安全与防护学术会议论文集. 2010: 401−405.
    [15]
    杨大兴, 马林建, 马淑娜, 等. 常规武器对钢筋混凝土梁二次爆炸效应分析 [J]. 防护工程, 2012(6): 38–41.

    YANG D X, MA L J, MA S N, et al. An analysis of the damage effects of a second conventional weapon explosion on reinforced concrete beams [J]. Protective Engineering, 2012(6): 38–41.
    [16]
    唐廷, 周健南. 地震后地下受损拱结构的抗爆炸能力研究 [J]. 兵工学报, 2017, 38(9): 1736–1744. DOI: 10.3969/j.issn.1000-1093.2017.09.010.

    TANG T, ZHOU J N. Study of anti-blasting ability of damaged underground arch structure after earthquake [J]. Acta Armamentarii, 2017, 38(9): 1736–1744. DOI: 10.3969/j.issn.1000-1093.2017.09.010.
    [17]
    WANG J. Simulation of landmine explosion using ls-dyna3d software: benchmark work of simulation of explosion in soil and air [R]. Fishermans Bend, Victoria, Australia: DSTO Aeronautical and Maritime Research Laboratory, 2001.
    [18]
    YANG G D, WANG G H, LU W B, et al. A SPH-lagrangian-eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion [J]. KSCE Journal of Civil Engineering, 2018(22): 3085–3101. DOI: 10.1007/s12205-017-0610-1.
    [19]
    ZHANG Y D, FANG Q, LIU O, et al. Numerical and experimental investigation into plane charge explosion technique [J]. International Journal of Impact Engineering, 2008, 35(10): 1179–1185. DOI: 10.1016/j.ijimpeng.2008.01.009.
    [20]
    孙善政, 卢浩, 李杰, 等. 侵爆作用下混凝土靶破坏效应试验与数值模拟 [J]. 振动与冲击, 2022, 41(1): 206–212. DOI: 10.13465/j.cnki.jvs.2022.01.026.

    SUN S Z, LU H, LI J, et al. Test and numerical simulation for damage effect of concrete target under penetration and explosion [J]. Journal of Vibration and Shock, 2022, 41(1): 206–212. DOI: 10.13465/j.cnki.jvs.2022.01.026.
    [21]
    马维. 地下管道结构爆振效应和冲击破坏行为实验 [J]. 解放军理工大学学报(自然科学版), 2008, 9(1): 39–46. DOI: 10.7666/j.issn.1009-3443.20080109.

    MA W. Experimental investigations on effects of blast vibration and behaviors of impacting failure of underground pipeline structures [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2008, 9(1): 39–46. DOI: 10.7666/j.issn.1009-3443.20080109.
    [22]
    钱七虎. 防护结构计算原理[M]. 南京: 中国人民解放军工程兵工程学院, 1981: 73−77.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(8)

    Article Metrics

    Article views (421) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return