Volume 43 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
WANG Zhenning, YIN Jianping, YI Jianya, LI Xudong. A study on the circumferential propagation law of the shock waves produced by the near ground dynamic explosion of cylindrical charge[J]. Explosion And Shock Waves, 2023, 43(6): 063201. doi: 10.11883/bzycj-2022-0313
Citation: WANG Zhenning, YIN Jianping, YI Jianya, LI Xudong. A study on the circumferential propagation law of the shock waves produced by the near ground dynamic explosion of cylindrical charge[J]. Explosion And Shock Waves, 2023, 43(6): 063201. doi: 10.11883/bzycj-2022-0313

A study on the circumferential propagation law of the shock waves produced by the near ground dynamic explosion of cylindrical charge

doi: 10.11883/bzycj-2022-0313
  • Received Date: 2022-07-26
  • Rev Recd Date: 2022-09-30
  • Available Online: 2022-11-02
  • Publish Date: 2023-06-05
  • The complex terminal ballistic parameters of the warhead will affect the circumferential propagation law of the near ground explosive wave and the damage degree to the target. Studying the propagation law of the near ground explosive wave of the cylindrical charge has important engineering significance to accurately evaluate the damage efficiency. By using AUTODYN-3D software, the near ground explosion of cylindrical charge with different terminal ballistic parameters is simulated and calculated, and the data of shock wave pressure in the front, back and side directions produced by the near ground explosion of cylindrical charge are obtained by modeling in two directions respectively. Thus, the influences of four parameters, namely, the velocity of the battle group, the impact angle, the height of the explosion center and the ratio of the length to diameter of the charge, on the propagation of the shock wave produced by the near ground explosion of the cylindrical charge are studied. The evolution process of the shock wave, the peak pressure and the height of the Mach stem are analyzed. The results show that the height of the explosion center is the main factor affecting the height of the shock wave Mach stem during static explosion, and the impact angle and the length-to-diameter ratio of the charge are the main factors affecting the difference in the height direction of the Mach stem. During dynamic explosion, the height of circumferential Mach stem can be increased, especially in the front; in addition, the peak value of forward shock wave increases linearly with the increase of dynamic detonation velocity. The results of orthogonal optimization show that the dynamic detonation velocity has the largest range to the front peak pressure of the cylindrical charge among the four variables; the impact angle has the largest range to the rear peak pressure; and the height of explosion center has the greatest influence on the height of Mach stem. By studying the circumferential propagation law of the shock wave produced by near ground dynamic explosion of the cylindrical charge, the results show that reasonable adjustment of the charge parameters and the front of the near ground explosion can be used for reference to achieve the maximum damage or reduce the hyper-pressure damage in a certain direction.
  • loading
  • [1]
    陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究 [J]. 爆炸与冲击, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.

    CHEN L M, LI Z B, CHEN R. Characteristics of dynamic explosive shock wave of moving charge [J]. Explosion and Shock Waves, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.
    [2]
    聂源, 蒋建伟, 李梅. 球形装药动态爆炸冲击波超压场计算模型 [J]. 爆炸与冲击, 2017, 37(5): 951–956. DOI: 10.11883/1001-1455(2017)05-0951-06.

    NIE Y, JIANG J W, LI M. Overpressure calculation model of sphere charge blastingwith moving velocity [J]. Explosion and Shock Waves, 2017, 37(5): 951–956. DOI: 10.11883/1001-1455(2017)05-0951-06.
    [3]
    蒋海燕, 李芝绒, 张玉磊, 等. 运动装药空中爆炸冲击波特性研究 [J]. 高压物理学报, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010.

    JIANG H Y, LI Z R, ZHANG Y L, et al. Characteristics of air blast wave field for explosive chargemoving at different velocities [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010.
    [4]
    郗洪柱, 孔德仁, 乐贵高, 等. 圆柱装药近地空爆冲击波峰值超压空间转换模型 [J]. 高压物理学报, 2021, 35(3): 032301. DOI: 10.11858/gywlxb.20200652.

    XI H Z, KONG D R, YUE G G, et al. Space conversion model of peak overpressure in near-earth air blast shockwave with cylindrical charge [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 032301. DOI: 10.11858/gywlxb.20200652.
    [5]
    郑监, 卢芳云, 陈荣. 柱形装药条件下锥形水中爆炸激波管内的冲击波特性 [J]. 爆炸与冲击, 2021, 41(10): 103201. DOI: 10.11883/bzycj-2020-0316.

    ZHENG J, LU F Y, CHEN R. Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition [J]. Explosion and Shock Waves, 2021, 41(10): 103201. DOI: 10.11883/bzycj-2020-0316.
    [6]
    廖真, 唐德高, 李治中, 等. 近地面空中爆炸马赫反射数值模拟研究 [J]. 振动与冲击, 2020, 39(5): 164–169, 176. DOI: 10.13465/j.cnki.jvs.2020.05.022.

    LIAO Z, TANG D G, LI Z Z, et al. Numerical simulation for Mach reflection in air explosion near ground [J]. Journal of Vibration and Shock, 2020, 39(5): 164–169, 176. DOI: 10.13465/j.cnki.jvs.2020.05.022.
    [7]
    陈鑫, 高轩能. 炸药近地爆炸的数值模拟及影响参数的分析 [J]. 华侨大学学报(自然科学版), 2014, 35(5): 570–575. DOI: 10.11830/ISSN.1000-5013.2014.05.0570.

    CHEN X, GAO X N. Numerical simulation and analysis of influence parameters for explosions near ground [J]. Journal of Huaqiao University (Natural Science), 2014, 35(5): 570–575. DOI: 10.11830/ISSN.1000-5013.2014.05.0570.
    [8]
    WANG Y, WANG H, CUI C Y, et al. Investigating different grounds effects on shock wave propagation resulting from near-ground explosion [J]. Applied Sciences, 2019, 9(17): 3639. DOI: 10.3390/app9173639.
    [9]
    LU Y, WANG Z Q. Characterization of structural effects from above-ground explosion using coupled numerical simulation [J]. Computers & Structures, 2006, 84(28): 1729–1742. DOI: 10.1016/j.compstruc.2006.05.002.
    [10]
    DENG G Q, YU X. Numerical study on the case effect of a bomb air explosion [J]. Defence Technology, 2021, 17(4): 1461–1470. DOI: 10.1016/j.dt.2020.08.003.
    [11]
    LI T, WANG C, YANG T H, et al. A novel construction method of computational domains on large-scale near-ground explosion problems [J]. Journal of Computational Physics, 2020, 407: 109226. DOI: 10.1016/j.jcp.2019.109226.
    [12]
    YOU W B, DING Y H, YAO Y. Static explosion field reconstruction based on the improved biharmonic spline interpolation [J]. IEEE Sensors Journal, 2020, 20(13): 7235–7240. DOI: 10.1109/JSEN.2020.2978502.
    [13]
    任朋飞, 王显会, 张进成, 等. 刚性地面爆炸冲击场仿真与试验研究 [J]. 科学技术与工程, 2017, 17(21): 30–36. DOI: 10.3969/j.issn.1671-1815.2017.21.006.

    REN P F, WANG X H, ZHANG J C, et al. Simulation and experimental study on explosive shock field on rigid ground [J]. Science Technology and Engineering, 2017, 17(21): 30–36. DOI: 10.3969/j.issn.1671-1815.2017.21.006.
    [14]
    赵蓓蕾, 崔村燕, 陈景鹏, 等. 近地爆炸地面冲击波传播规律的数值研究 [J]. 四川兵工学报, 2015, 36(9): 45–48. DOI: 10.11809/scbgxb2015.09.012.

    ZHAO B L, CUI C Y, CHEN J P, et al. Numerical study of propagation law of ground shock wave in near surface explosion [J]. Journal of Ordnance Equipment Engineering, 2015, 36(9): 45–48. DOI: 10.11809/scbgxb2015.09.012.
    [15]
    成凤生, 宋浦, 顾晓辉, 等. TNT装药爆炸波在刚性平面上方传播反射的数值研究 [J]. 爆破器材, 2011, 40(4): 1–4. DOI: 10.3969/j.issn.1001-8352.2011.04.001.

    CHENG F S, SONG P, GU X H, et al. Numerical investigation into the propagation and reflection of TNT blast wave above rigid plane [J]. Explosive Materials, 2011, 40(4): 1–4. DOI: 10.3969/j.issn.1001-8352.2011.04.001.
    [16]
    段晓瑜, 崔庆忠, 郭学永, 等. 炸药在空气中爆炸冲击波的地面反射超压实验研究 [J]. 兵工学报, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.

    DUAN X Y, CUI Q Z, GUO X Y, et al. Experimental investigation of ground reflected overpressure of shock wave in air blast [J]. Acta Armamentarii, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.
    [17]
    杜红棉, 曹学友, 何志文, 等. 近地爆炸空中和地面冲击波特性分析和验证 [J]. 弹箭与制导学报, 2014, 34(4): 65–68. DOI: 10.3969/j.issn.1673-9728.2014.04.018.

    DU H M, CAO X Y, HE Z W, et al. Analysisand validation for characteristics of air and ground shock wave near field explosion [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(4): 65–68. DOI: 10.3969/j.issn.1673-9728.2014.04.018.
    [18]
    姚成宝, 王宏亮, 浦锡锋, 等. 空中强爆炸冲击波地面反射规律数值模拟研究 [J]. 爆炸与冲击, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.

    YAO C B, WANG H L, PU X F, et al. Numerical simulation of intense blast wave reflected on rigid ground [J]. Explosion and Shock Waves, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.
    [19]
    吴赛, 赵均海, 张冬芳, 等. 刚性地面对爆炸冲击波传播规律的影响 [J]. 工程爆破, 2020, 26(2): 1–8. DOI: 10.3969/j.issn.1006-7051.2020.02.001.

    WU S, ZHAO J H, ZHANG D F, et al. Influence of rigid ground on propagation characteristics of blast wave [J]. Engineering Blasting, 2020, 26(2): 1–8. DOI: 10.3969/j.issn.1006-7051.2020.02.001.
    [20]
    辛春亮, 徐更光, 刘科种, 等. 考虑后燃烧效应的TNT空气中爆炸的数值模拟 [J]. 含能材料, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.

    XIN C L, XU G G, LIU K Z, et al. Numerical simulation of TNT explosion with post-detonation burning effect in air [J]. Chinese Journal of Energetic Materials, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.
    [21]
    郭炜, 俞统昌, 金朋刚. 三波点的测量与实验技术研究 [J]. 火炸药学报, 2007, 30(4): 55–57, 61. DOI: 10.3969/j.issn.1007-7812.2007.04.014.

    GUO W, YU T C, JIN P G. Test of triple point and study on its test technology [J]. Chinese Journal of Explosives and Propellants, 2007, 30(4): 55–57, 61. DOI: 10.3969/j.issn.1007-7812.2007.04.014.
    [22]
    畅博, 谷鸿平, 牛晨伟, 等. 运动炸药近地爆炸冲击波场特性研究 [J]. 爆破, 2018, 35(3): 49–54. DOI: 10.3963/j.issn.1001-487X.2018.03.008.

    CHANG B, GU H P, NIU C W, et al. Characteristics investigation on shock wave field of near ground blasting of moving explosive charge [J]. Blasting, 2018, 35(3): 49–54. DOI: 10.3963/j.issn.1001-487X.2018.03.008.
    [23]
    曾一鑫, 白春华, 陈健, 等. 含铝炸药震源激发地震波的数值模拟 [J]. 高压物理学报, 2013, 27(6): 872–876. DOI: 10.11858/gywlxb.2013.06.012.

    ZENG Y X, BAI C H, CHEN J, et al. Simulations of seismic waves stimulated by aluminized explosive [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 872–876. DOI: 10.11858/gywlxb.2013.06.012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(29)  / Tables(8)

    Article Metrics

    Article views (464) PDF downloads(262) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return