Volume 43 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
XIA Mengtao, LI Minghong, ZONG Zhouhong, GAN Lu, HUANG Jie, LI Zhuo. Failure modes of precast segmental concrete-filled double-skin steel tube columns under large equivalent explosion[J]. Explosion And Shock Waves, 2023, 43(11): 112202. doi: 10.11883/bzycj-2022-0385
Citation: XIA Mengtao, LI Minghong, ZONG Zhouhong, GAN Lu, HUANG Jie, LI Zhuo. Failure modes of precast segmental concrete-filled double-skin steel tube columns under large equivalent explosion[J]. Explosion And Shock Waves, 2023, 43(11): 112202. doi: 10.11883/bzycj-2022-0385

Failure modes of precast segmental concrete-filled double-skin steel tube columns under large equivalent explosion

doi: 10.11883/bzycj-2022-0385
  • Received Date: 2022-09-07
  • Rev Recd Date: 2023-09-28
  • Available Online: 2023-10-07
  • Publish Date: 2023-11-17
  • In order to improve the blast resistant performance of prefabricated highway bridges, a precast segmental concrete-filled double-skin steel tube (PS-CFDST) column was developed. A large equivalent field blast test on the PS-CFDST columns was conducted and a high-fidelity finite element model was established using LS-DYNA to simulate the dynamic response and failure mode of the PS-CFDST columns under blast loading. The experimental and numerical results demonstrated that the failure mode of the PS-CFDST columns under large equivalent surface explosion was fracture failure of prestressing tendons induced loss of column integrity. The PS-CFDST column exhibited large shear slippage at the column bottom segment-to-footing joint. The damage to core concrete was concentrated at the joints and contact areas between segment and prestressing tendons. The modeling approaches for prestressing tendons have a significant influence on the dynamic response of the PS-CFDST columns. Increasing axial loads can effectively mitigate the column lateral deflection and shear slippage at the column bottom and it is beneficial to improve the blast resistance of the PS-CFDST columns.
  • loading
  • [1]
    陈彦江, 丁梦佳, 许维炳, 等. 预制拼装桥墩体系及其抗震性能研究进展 [J]. 中国公路学报, 2022, 35(12): 56–76. DOI: 10.19721/j.cnki.1001-7372.2022.12.006.

    CHEN Y J, DING M J, XU W B, et al. Research process of the seismic performance for pre-fabricated concrete pier system [J]. China Journal of Highway and Transport, 2022, 35(12): 56–76. DOI: 10.19721/j.cnki.1001-7372.2022.12.006.
    [2]
    SHI Y C, HAO H, LI Z X. Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35: 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
    [3]
    LI M H, ZONG Z H, LIU L, et al. Experimental and numerical study on damage mechanism of CFDST bridge columns subjected to contact explosion [J]. Engineering Structures, 2018, 159: 265–276. DOI: 10.1016/j.engstruct.2018.01.006.
    [4]
    LI M H, ZONG Z H, HAO H, et al. Experimental and numerical study on the behaviour of CFDST columns subjected to close-in blast loading [J]. Engineering Structures, 2019, 185: 203–220. DOI: 10.1016/j.engstruct.2019.01.116.
    [5]
    LI M H, ZONG Z H, DU M L, et al. Experimental investigation on the residual axial capacity of close-in blast damaged CFDST columns [J]. Thin-Walled Structures, 2021, 165: 107976. DOI: 10.1016/j.tws.2021.107976.
    [6]
    LI J, HAO H, WU C Q. Numerical study of precast segmental column under blast loads [J]. Engineering Structures, 2017, 134: 125–137. DOI: 10.1016/j.engstruct.2016.12.028.
    [7]
    杨旭, 张于晔, 张宁. 爆炸冲击作用下预制节段拼装桥墩的动态响应与损伤分析 [J]. 爆炸与冲击, 2019, 39(3): 035104. DOI: 10.11883/bzycj-2017-0429.

    YANG X, ZHANG Y Y, ZHANG N. Dynamic response and damage analysis of precast segmental piers under blast impact [J]. Explosion and Shock Waves, 2019, 39(3): 035104. DOI: 10.11883/bzycj-2017-0429.
    [8]
    张于晔, 杨旭, 冯君. 节段拼装桥墩在爆炸冲击作用下的破坏模式与损伤评估研究 [J]. 振动与冲击, 2020, 39(23): 225–233. DOI: 10.13465/j.cnki.jvs.2020.23.032.

    ZHANG Y Y, YANG X, FENG J. Failure mode and damage assessment of segmental assembled pier under blast impact [J]. Journal of Vibration and Shock, 2020, 39(23): 225–233. DOI: 10.13465/j.cnki.jvs.2020.23.032.
    [9]
    LIU L, ZONG Z H, MA J, et al. Experimental study on behavior and failure mode of PSRC bridge pier under close-in blast loading [J]. Journal of Bridge Engineering, 2021, 26(2): 04020124. DOI: 10.1061/(ASCE)BE.1943-5592.0001662.
    [10]
    LIU L, MA J, ZONG Z H, et al. Blast response and damage mechanism of prefabricated segmental RC bridge piers [J]. Journal of Bridge Engineering, 2021, 26(4): 04021012. DOI: 10.1061/(ASCE)BE.1943-5592.0001698.
    [11]
    PHAM T M, DO T V, HAO H. Roles of steel confinement in precast concrete segmental columns under impact and blast loads [C]//the 13th International Conference on Shock and Impact Loads on Structures. Guangzhou, Guangdong, China, 2019: 391–400.
    [12]
    DO T V, PHAM T M, HAO H. Stress wave propagation and structural response of precast concrete segmental columns under simulated blast loads [J]. International Journal of Impact Engineering, 2020, 143: 103595. DOI: 10.1016/j.ijimpeng.2020.103595.
    [13]
    ZHANG X Z, HAO H, LI M H, et al. The blast resistant performance of concrete-filled steel-tube segmental columns [J]. Journal of Constructional Steel Research, 2020, 168: 105997. DOI: 10.1016/j.jcsr.2020.105997.
    [14]
    DO T V, NGUYEN T P. Response of concrete-filled double skin tube segmental columns under blast loads [M]. Singapore: Springer Singapore, 2021: 207–218.
    [15]
    中国土木工程学会. 中空夹层钢管混凝土结构技术规程: T/CCES 7-2020 [S]. 北京: 中国建筑工业出版社, 2020.

    China Civil Engineering Society. Technical specification for concrete-filled double skin steel tubular structures: T/CCES 7-2020 [S]. Beijing, China: China Architecture Industry Press, 2020.
    [16]
    HAO Y F, HAO H. Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings [J]. Engineering Structures, 2014, 73: 24–38. DOI: 10.1016/j.engstruct.2014.04.042.
    [17]
    RANDERS-PEHRSON G, BANNISTER K A. Airblast loading model for DYNA2D and DYNA3D: ARL-TR-1310 [R]. Aberdeen Proving Ground, MD, USA: USA Army Research Laboratory, 1997.
    [18]
    NGO T, MENDIS P, KRAUTHAMMER T. Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading [J]. Journal of Structural Engineering, 2007, 133(11): 1582–1590. DOI: 10.1061/(ASCE)0733-9445(2007)133:11(1582).
    [19]
    CHEN W S, HAO H, CHEN S Y. Numerical analysis of prestressed reinforced concrete beam subjected to blast loading [J]. Materials and Design, 2015, 65: 662–674. DOI: 10.1016/j.matdes.2014.09.033.
    [20]
    DO T V, PHAM T M, HAO H. Numerical investigation of the behavior of precast concrete segmental columns subjected to vehicle collision [J]. Engineering Structures, 2018, 156: 375–393. DOI: 10.1016/j.engstruct.2017.11.033.
    [21]
    DAWOOD H, ELGAWADY M, HEWES J. Factors affecting the seismic behavior of segmental precast bridge columns [J]. Frontiers of Structural and Civil Engineering, 2014, 8(4): 388–398. DOI: 10.1007/s11709-014-0264-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(1)

    Article Metrics

    Article views (93) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return