Citation: | JIANG Hongjie, LU Wenbo, WANG Gaohui, LIU Yijia, WANG Yang. On characteristics of failure zones in mass concrete subjected to underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(10): 102202. doi: 10.11883/bzycj-2022-0415 |
[1] |
SHU Y Z, WANG G H, LU W B, et al. Stability assessment method of damaged concrete gravity dams subjected to penetration explosion [J]. Engineering Structures, 2022, 267: 114683. DOI: 10.1016/j.engstruct.2022.114683.
|
[2] |
WANG G H, LU W B, YANG G D, et al. A state-of-the-art review on blast resistance and protection of high dams to blast loads [J]. International Journal of Impact Engineering, 2020, 139: 103529. DOI: 10.1016/j.ijimpeng.2020.103529.
|
[3] |
LI Q, WANG G H, LU W B, et al. Failure modes and effect analysis of concrete gravity dams subjected to underwater contact explosion considering the hydrostatic pressure [J]. Engineering Failure Analysis, 2018, 85: 62–76. DOI: 10.1016/j.engfailanal.2017.12.008.
|
[4] |
DRUKOVANYI M F, KOMIR V M, MYACHINA N I, et al. Effect of the charge diameter and type of explosive on the size of the overcrushing zone during an explosion [J]. Soviet Mining Science, 1973, 9(5): 500–506. DOI: 10.1007/BF02501378.
|
[5] |
戴俊. 柱状装药爆破的岩石压碎圈与裂隙圈计算 [J]. 辽宁工程技术大学学报(自然科学版), 2001, 20(2): 144–147. DOI: 10.3969/J.ISSN.1008-0562.2001.02.005.
DAI J. Calculation of radii of the broken and cracked areas in rock by a long charge explosion [J]. Journal of Liaoning Technical University (Natural Science), 2001, 20(2): 144–147. DOI: 10.3969/J.ISSN.1008-0562.2001.02.005.
|
[6] |
DJORDJEVIC N. Two-component of blast fragmentation [C]//Proceedings of the Sixth International Symposium on Rock Fragmentation by Blasting-Fragblast. Johannesburg: South African Institute of Mining and Metallurgy, 1999: 213–219.
|
[7] |
HUSTRULID W. Blasting principles for open pit mining-theoretical foundations [M]. Rotterdam: Balkema, 1999.
|
[8] |
冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进 [J]. 爆炸与冲击, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.
LENG Z D, LU W B, CHEN M, et al. Improved calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.
|
[9] |
钱七虎. 岩石爆炸动力学的若干进展 [J]. 岩石力学与工程学报, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.
QIAN Q H. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.
|
[10] |
ESEN S, ONEDERRA I, BILGIN H A. Modelling the size of the crushed zone around a blasthole [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(4): 485–495. DOI: 10.1016/s1365-1609(03)00018-2.
|
[11] |
FAR M S, WANG Y. Probabilistic analysis of crushed zone for rock blasting [J]. Computers and Geotechnics, 2016, 80: 290–300. DOI: 10.1016/j.compgeo.2016.08.025.
|
[12] |
TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344.
|
[13] |
林英松, 王莉, 丁雁生, 等. 饱和水泥试样被爆炸激波损伤破碎的尺度研究 [J]. 爆炸与冲击, 2008, 28(2): 186–192. DOI: 10.11883/1001-1455(2008)02-0186-07.
LIN Y S, WANG L, DING Y S, et al. Experimental study of damage and fracture zone in cement sample subjected to exploding wave [J]. Explosion and Shock Waves, 2008, 28(2): 186–192. DOI: 10.11883/1001-1455(2008)02-0186-07.
|
[14] |
曾惠泉, 杨秀敏, 焦云鹏, 等. 触地爆炸流体弹塑性模型数值计算 [J]. 爆炸与冲击, 1982, 2(1): 45–54.
ZENG H Q, YANG X M, JIAO Y P, et al. The hydrodynamic elasto-plastic model calculation of the contact-burst ground shock [J]. Explosion and Shock Waves, 1982, 2(1): 45–54.
|
[15] |
王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题III: 地下核爆炸诱发工程性地震效应的计算原理及应用 [J]. 岩石力学与工程学报, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.
WANG M Y, LI J. Nonlinear mechanics problems in rock explosion and shock. Part III: the calculation principle of engineering seismic effects induced by underground nuclear explosion and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.
|
[16] |
金辉, 李兵, 权琳, 等. 不同边界条件下炸药水中爆炸的能量输出结构 [J]. 爆炸与冲击, 2013, 33(3): 325–329. DOI: 10.11883/1001-1455(2013)03-0325-05.
JIN H, LI B, QUAN L, et al. Configuration of explosive energy output in different underwater boundary conditions [J]. Explosion and Shock Waves, 2013, 33(3): 325–329. DOI: 10.11883/1001-1455(2013)03-0325-05.
|
[17] |
ZHAO X H, WANG G H, LU W B, et al. Damage features of RC slabs subjected to air and underwater contact explosions [J]. Ocean Engineering, 2018, 147: 531–545. DOI: 10.1016/j.oceaneng.2017.11.007.
|
[18] |
刘靖晗, 唐廷, 韦灼彬, 等. 水下接触爆炸下沉箱码头毁伤效应 [J]. 爆炸与冲击, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.
LIU J H, TANG T, WEI Z B, et al. Damage effects of a caisson wharf subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.
|
[19] |
YANG G D, FAN Y, WANG G H, et al. Blast resistance of air-backed RC slab against underwater contact explosion [J/OL]. Defence Technology, 2022(2022-11-17). https://www.sciencedirect.com/science/article/pii/S2214914722002422. DOI: 10.1016/j.dt.2022.11.004.
|
[20] |
HENRYCH J. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 73–82.
|
[21] |
哈努卡耶夫. 矿岩爆破物理过程 [M]. 刘殿中, 译. 北京: 冶金工业出版社, 1980: 46–53, 81–82.
|
[22] |
詹发民, 姜涛, 黄雪峰. 水下爆破 [M]. 武汉: 湖北科学技术出版社, 2021: 227–230.
|
[23] |
王永刚, 张远平, 王礼立. C30混凝土冲击绝热关系和Grüneisen型状态方程的实验研究 [J]. 物理学报, 2008, 57(12): 7789–7793. DOI: 10.3321/J.ISSN:1000-3290.2008.12.061.
WANG Y G, ZHANG Y P, WANG L L. Experimental study on the shock Hugoniot relationship and the Grüneisen-type equation of state for C30 concrete [J]. Acta Physica Sinica, 2008, 57(12): 7789–7793. DOI: 10.3321/J.ISSN:1000-3290.2008.12.061.
|
[24] |
王礼立, 任辉启, 虞吉林, 等. 非线性应力波传播理论的发展及应用 [J]. 固体力学学报, 2013, 34(3): 217–240. DOI: 10.3969/j.issn.0254-7805.2013.03.001.
WANG L L, REN H Q, YU J L, et al. Development and application of the theory of nonlinear stress wave propagation [J]. Chinese Journal of Solid Mechanics, 2013, 34(3): 217–240. DOI: 10.3969/j.issn.0254-7805.2013.03.001.
|
[25] |
王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 232–234.
|
[26] |
董毓利, 谢和平, 赵鹏. 不同应变率下混凝土受压全过程的实验研究及其本构模型 [J]. 水利学报, 1997(7): 72–77. DOI: 10.13243/J.CNKI.SLXB.1997.07.013.
DONG Y L, XIE H P, ZHAO P. Experimental study and constitutive model on concrete under compression with different strain rate [J]. Journal of Hydraulic Engineering, 1997(7): 72–77. DOI: 10.13243/J.CNKI.SLXB.1997.07.013.
|
[27] |
曹扬悦也, 蒋志刚, 谭清华, 等. 基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型 [J]. 振动与冲击, 2017, 36(5): 48–53,60. DOI: 10.13465/j.cnki.jvs.2017.05.008.
CAO Y Y Y, JIANG Z G, TAN Q H, et al. Penetration model for concrete-rock targets based on Hoek-Brown criterion [J]. Journal of Vibration and Shock, 2017, 36(5): 48–53,60. DOI: 10.13465/j.cnki.jvs.2017.05.008.
|
[28] |
中华人民共和国水利部. 水工混凝土结构设计规范: SL 191—2008 [S]. 北京: 中国水利水电出版社, 2008.
|
[29] |
刘增晨, 蒋利, 成莞莞, 等. 高强混凝土抗压抗拉强度的尺寸效应 [J]. 科学技术与工程, 2015, 15(30): 209–213. DOI: 10.3969/j.issn.1671-1815.2015.30.039.
LIU Z C, JIANG L, CHENG W W, et al. The dimensional effect of compressive strength and splitting tensile strength of high strength concrete [J]. Science Technology and Engineering, 2015, 15(30): 209–213. DOI: 10.3969/j.issn.1671-1815.2015.30.039.
|
[30] |
张艳红, 胡晓, 杨陈, 等. 大坝混凝土强度参数的统计分析 [J]. 水力发电学报, 2015, 34(6): 169–175.
ZHANG Y H, HU X, YANG C, et al. Statistical analysis of dam concrete strength parameters [J]. Journal of Hydroelectric Engineering, 2015, 34(6): 169–175.
|
[31] |
ROSENBERG Z. On the relation between the Hugoniot elastic limit and the yield strength of brittle materials [J]. Journal of Applied Physics, 1993, 74(1): 752–753. DOI: 10.1063/1.355247.
|
[32] |
谢和平, 董毓利, 李世平. 不同围压下混凝土受压弹塑性损伤本构模型的研究 [J]. 煤炭学报, 1996, 21(3): 265–270. DOI: 10.3321/j.issn:0253-9993.1996.03.009.
XIE H P, DONG Y L, LI S P. Study of a constitutive model of elasto-plastic damage of concrete in axial compression test under different pressures [J]. Journal of China Coal Society, 1996, 21(3): 265–270. DOI: 10.3321/j.issn:0253-9993.1996.03.009.
|
[33] |
KIPP M E, CHHABILDAS L C, REINHART W D. Elastic shock response and spall strength of concrete [J]. AIP Conference Proceedings, 1998, 429(1): 557–560. DOI: 10.1063/1.55664.
|
[34] |
GUO Y B, GAO G F, JING L, et al. Dynamic properties of mortar in high-strength concrete [J]. International Journal of Impact Engineering, 2022, 165: 104216. DOI: 10.1016/j.ijimpeng.2022.104216.
|
[35] |
ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD-757183 [R]. Washington: Naval Intelligence Support Center, 1973: 119–120.
|
[36] |
陈建华. 层状岩体水下裸露爆破的药量计算 [J]. 矿业研究与开发, 1995(3): 54–56.
CHEN J H. The calculation of explosive weight in underwater exposed blasting of stratified rock [J]. Mining Research and Development, 1995(3): 54–56.
|
[37] |
中华人民共和国水利电力部. 水工钢筋混凝土结构设计规范(试行) : SDJ 20—78 [S]. 北京: 水利电力出版社, 1979.
|
[38] |
中国人民解放军总参谋部兵种部. 军用爆破教范 [M]. 北京: 解放军出版社, 1998: 206.
|
[1] | CHEN Yang, TANG Jie, YI Guo, WU Liang, JIANG Gang. Simulation analysis on impact resistance of aluminum foam sandwich structures using peridynamics[J]. Explosion And Shock Waves, 2023, 43(3): 034202. doi: 10.11883/bzycj-2022-0110 |
[2] | YUAN Kangbo, YAO Xiaohu, WANG Ruifeng, MO Yonghui. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials[J]. Explosion And Shock Waves, 2022, 42(9): 091401. doi: 10.11883/bzycj-2021-0416 |
[3] | ZHANG Pengzhou, DONG Qi, YANG Sha. Influence of blast loading parameters on elastic dynamic response of an infinite-length cylindrical shell[J]. Explosion And Shock Waves, 2021, 41(6): 063101. doi: 10.11883/bzycj-2020-0269 |
[4] | CHENG Shuai, LIU Wenxiang, TONG Nianxue, YIN Wenjun, SHI Yingju, ZHANG Dezhi. Damage mechanism of typical stiffened aircraft structures under explosive loading[J]. Explosion And Shock Waves, 2021, 41(1): 013302. doi: 10.11883/bzycj-2020-0077 |
[5] | WANG Lili, DONG Xinlong. Talk about dynamic plasticity and viscoplasticity[J]. Explosion And Shock Waves, 2020, 40(3): 031101. doi: 10.11883/bzycj-2020-0024 |
[6] | CHENG Shuai, SHI Yingju, YIN Wenjun, LIU Wenxiang, TANG Shiying, ZHANG Dezhi. Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071406. doi: 10.11883/bzycj-2019-0339 |
[7] | LIU Wenxiang, ZHANG Dezhi, ZHONG Fangping, CHENG Shuai, ZHANG Qingming. A theoretical method for calculating spatial periodic distribution of deformation of a spherical shell under explosive loading[J]. Explosion And Shock Waves, 2020, 40(6): 064201. doi: 10.11883/bzycj-2019-0340 |
[8] | CHENG Shuai, ZHANG Dezhi, LIU Wenxiang, YIN Wenjun, SHI Yingju, CHEN Bo, TANG Shiying. Strain growth of flange bolts of the spherical explosive vessel[J]. Explosion And Shock Waves, 2019, 39(3): 034102. doi: 10.11883/bzycj-2018-0058 |
[9] | Liu Wenxiang, Zhang Dezhi, Cheng Shuai, Zhong Fangping, Zhang Qingming. Limit of strain growth in a spherical explosion vessel[J]. Explosion And Shock Waves, 2017, 37(6): 901-906. doi: 10.11883/1001-1455(2017)06-0901-06 |
[10] | Cui Yun-xiao, Hu Yong-le, Wang Chun-ming, Hu Hao, Chen Peng-wan. Dynamic response of multi-layer steel cylinder under internal intense blast loading[J]. Explosion And Shock Waves, 2015, 35(6): 820-824. doi: 10.11883/1001-1455(2015)06-0820-05 |
[11] | Cheng Shuai, Zhang De-zhi, Liu Wen-xiang. Reinforcing design of openings of a spherical explosive containment vessel[J]. Explosion And Shock Waves, 2015, 35(5): 717-722. doi: 10.11883/1001-1455(2015)05-0717-06 |
[12] | Gao Hui-hui, Zhang Bo, Qiao Jian-jiang, Yang Shao-peng, Chen Ting, Chen Xiao. Explosion characteristics of dimethyl ether/air/argon mixtures[J]. Explosion And Shock Waves, 2015, 35(5): 753-757. doi: 10.11883/1001-1455(2015)05-0753-05 |
[13] | Xue Bing, Ma Hong-hao, Shen Zhao-wu, Yu Yong. Dynamic calibration of pressure sensors by small-scale explosive experiments in an explosion containment vessel[J]. Explosion And Shock Waves, 2015, 35(3): 437-441. doi: 10.11883/1001-1455(2015)03-0437-05 |
[14] | MA Li, HU Yang, XIN Jian, ZHENG Jin-yang, DENG Gui-de, CHEN Yong-jun. Transientfailureprocessofexplosioncontainmentvessels subjectedtoadiabaticshear[J]. Explosion And Shock Waves, 2012, 32(2): 136-142. doi: 10.11883/1001-1455(2012)02-0136-07 |
[15] | GONG Bai-lin, LU Fang-yun, LI Xiang-yu. Atheoreticalmodelforforecastingdeformationshapes ofdeformablewarheads[J]. Explosion And Shock Waves, 2010, 30(1): 65-69. doi: 10.11883/1001-1455(2010)01-0065-05 |
[16] | ZHANG Xiao-peng, GE Fei, XING Huai-nian, JIN Li-qiang. Dynamicstressmeasurementofalargeexplosion-containmentvessel[J]. Explosion And Shock Waves, 2010, 30(1): 101-104. doi: 10.11883/1001-1455(2010)01-0101-04 |
[17] | GUAN Yong-hong, HU Ba-yi, HUANG Chao. Vibrationanalysisofanexplosionvesselbasedonwaveletpackettransform[J]. Explosion And Shock Waves, 2010, 30(5): 551-555. doi: 10.11883/1001-1455(2010)05-00551-05 |
[18] | MA Yuan-yuan, ZHENG Jin-yang, CHEN Yong-jun, DENG Gui-de. Numerical simulation on dynamic response of the cylindrical explosion containment vessel with an elliptical cover[J]. Explosion And Shock Waves, 2009, 29(3): 249-254. doi: 10.11883/1001-1455(2009)03-0249-06 |
[19] | SONG Gui-fei, LI Cheng-guo, XIA Fu-jun, WEN Qi. A new explosion vessel used to recover warhead fragments and its application[J]. Explosion And Shock Waves, 2008, 28(4): 372-377. doi: 10.11883/1001-1455(2008)04-0372-06 |
[20] | ZHAN Ren-rui, TAO Chun-da, HAN Lin, , HUANG Yi-ming, HAN Dun-xin. The residual stress and its influence on the fatigue strength induced by explosive autofrettage[J]. Explosion And Shock Waves, 2005, 25(3): 239-243. doi: 10.11883/1001-1455(2005)03-0239-05 |
1. | 胡俊华,董奇,胡八一,任逸飞,黄广炎. 抗爆容器的内部爆炸效应和动态力学行为研究进展. 含能材料. 2024(09): 986-1008 . ![]() | |
2. | 刘文祥,张德志,程帅,马艳军. 爆炸容器研究进展. 现代应用物理. 2023(03): 61-69 . ![]() | |
3. | 刘文祥,张德志,钟方平,程帅,张庆明. 爆炸下球壳变形空间周期分布的理论计算方法. 爆炸与冲击. 2020(06): 78-85 . ![]() | |
4. | 程帅,师莹菊,殷文骏,刘文祥,唐仕英,张德志. 泡沫铝内衬对抗内部爆炸钢筒变形的影响. 爆炸与冲击. 2020(07): 56-63 . ![]() | |
5. | 程帅,张德志,刘文祥,殷文骏,师莹菊,陈博,唐仕英. 球形爆炸容器法兰联接螺栓的应变增长现象. 爆炸与冲击. 2019(03): 93-100 . ![]() | |
6. | 徐景林,顾文彬,刘建青,王振雄,刘欣,胡云昊,韩阳明. 圆柱形爆炸容器的应变增长现象. 兵工学报. 2018(S1): 96-101 . ![]() |