Volume 43 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
KANG Penglin, LI Xiaodong, LIU Wenjie, SUN Yantao, GUAN Yunfei, MA Zhigang, ZHAO Ziwen. Influence of the ignition energy on combustion and explosion characteristics of single-base propellant[J]. Explosion And Shock Waves, 2023, 43(7): 072302. doi: 10.11883/bzycj-2022-0452
Citation: KANG Penglin, LI Xiaodong, LIU Wenjie, SUN Yantao, GUAN Yunfei, MA Zhigang, ZHAO Ziwen. Influence of the ignition energy on combustion and explosion characteristics of single-base propellant[J]. Explosion And Shock Waves, 2023, 43(7): 072302. doi: 10.11883/bzycj-2022-0452

Influence of the ignition energy on combustion and explosion characteristics of single-base propellant

doi: 10.11883/bzycj-2022-0452
  • Received Date: 2022-10-19
  • Rev Recd Date: 2023-03-17
  • Available Online: 2023-04-11
  • Publish Date: 2023-07-05
  • A device was developed to experimentally explore the influences of the ignition energy on the combustion and explosion characteristics of single-base propellant. In order to control the ignition energy on the single-base propellant, the black powders with different masses were used to ignite the propellant in the combustion and explosion experiment. By analyzing the ablative traces on the inner wall of the witness plate and the confining steel cylinder, the combustion and explosion development process of the single-base propellant was discussed, and the influences of different ignition energies on the combustion and explosion characteristics of the single-base-propellant were obtained. The results show that, at the beginning of ignition, the combustion reaction of the propellant in the confining steel cylinder is incomplete and the reaction is weak according to the larger ablation trace diameter and lighter ablation trace color. After propagating a distance away from the ignition side, the combustion reaction becomes stronger, but the reaction is still incomplete at this time, smaller ablation diameter and deeper ablation color. While propagating to the end of the confinging steel cylinder, the propellant reaction is complete and the severity of reaction is relatively large, seen from the smaller ablation diameter and the lighter ablation color. At the ignition energies of 4.0, 5.0 and 8.0 kJ, the growth distances from initial ignition to rapid increase of reaction intensity were 54.66, 53.95 and 19.38 cm, respectively. At the ignition energy of 20.0 kJ, the propellant reaction is already strong at the beginning and grows stronger enough to produce obvious dents on the witness plate while propagating to the end. Also at this ignition energy, slow combustion, fast combustion and deflagration occur in the reacion of the propellant, respectively at different positions in the confining steel cylinder. The study enlights that the ignition energy has reference significance for the design of propellant charge.
  • loading
  • [1]
    BECKSTEAD M W, PUDUPPAKKAM K, THAKRE P, et al. Modeling of combustion and ignition of solid-propellant ingredients [J]. Progress in Energy and Combustion Science, 2007, 33(6): 497–551. DOI: 10.1016/j.pecs.2007.02.003.
    [2]
    AMBEKAR A, KIM M, LEE W H, et al. Characterization of display pyrotechnic propellants: burning rate [J]. Applied Thermal Engineering, 2017, 121: 761–767. DOI: 10.1016/j.applthermaleng.2017.04.097.
    [3]
    王艳平, 曾丹, 张同来, 等. 发射药燃烧热辐射传播规律 [J]. 爆炸与冲击, 2018, 38(1): 212–216. DOI: 10.11883/bzycj-2016-0152.

    WANG Y P, ZENG D, ZHANG T L, et al. Heat radiation propagation law of propellant combustion [J]. Explosion and Shock Waves, 2018, 38(1): 212–216. DOI: 10.11883/bzycj-2016-0152.
    [4]
    廖静林, 江劲勇, 路桂娥, 等. 发射药的火焰燃烧温度计算与测定分析 [J]. 含能材料, 2011, 19(1): 74–77. DOI: 10.3969/j.issn.1006-9941.2011.01.017.

    LIAO J L, JIANG J Y, LU G E, et al. Calculation and measurement analysis of propellant burning temperature [J]. Chinese Journal of Energetic Materials, 2011, 19(1): 74–77. DOI: 10.3969/j.issn.1006-9941.2011.01.017.
    [5]
    高金明, 曾丹, 孙磊, 等. 新型发射药爆炸TNT当量系数的实验研究 [J]. 爆炸与冲击, 2021, 41(10): 102101. DOI: 10.11883/bzycj-2020-0432.

    GAO J M, ZENG D, SUN L, et al. Experimental study on TNT equivalent coefficients for two new kinds of propellants [J]. Explosion and Shock Waves, 2021, 41(10): 102101. DOI: 10.11883/bzycj-2020-0432.
    [6]
    YAMAN H, ÇELIK V, DEĞIRMENCI E. Experimental investigation of the factors affecting the burning rate of solid rocket propellants [J]. Fuel, 2014, 115: 794–803. DOI: 10.1016/j.fuel.2013.05.033.
    [7]
    PILLAI A G S, SANGHAVI R R, DAYANANDAN C R, et al. Studies on RDX particle size in LOVA gun propellant formulations [J]. Propellants, Explosives, Pyrotechnics, 2001, 26(5): 226–228. DOI: 10.1002/1521-4087(200112)26:5<226::AID-PREP226>3.0.CO;2-9.
    [8]
    WANG B B, LIAO X, DELUCA L T, et al. Effects of particle size and content of RDX on burning stability of RDX-based propellants [J]. Defence Technology, 2022, 18(7): 1247–1256. DOI: 10.1016/j.dt.2021.05.009.
    [9]
    张丽娜, 王英博, 南风强, 等. 双层包覆对超多孔发射药燃烧性能的影响 [J]. 含能材料, 2020, 28(6): 498–503. DOI: 10.11943/CJEM2019197.

    ZHANG L N, WANG Y B, NAN F Q, et al. Effect of double-layer coating on combustion performance of super-porous propellant [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 498–503. DOI: 10.11943/CJEM2019197.
    [10]
    杨建兴, 杨伟涛, 马方生, 等. RDX粒度对硝胺发射药力学性能及燃烧性能的影响 [J]. 含能材料, 2017, 25(9): 706–711. DOI: 10.11943/j.issn.1006-9941.2017.09.001.

    YANG J X, YANG W T, MA F S, et al. Effect of RDX particle size on the mechanical and combustion properties of nitramine gun propellant [J]. Chinese Journal of Energetic Materials, 2017, 25(9): 706–711. DOI: 10.11943/j.issn.1006-9941.2017.09.001.
    [11]
    DAMSE R S, SINGH A, SINGH H. High energy propellants for advanced gun ammunition based on RDX, GAP and TAGN compositions [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(1): 52–60. DOI: 10.1002/prep.200700007.
    [12]
    LIANG D L, LIU J Z, CHEN B H, et al. Improvement in energy release properties of boron-based propellant by oxidant coating [J]. Thermochimica Acta, 2016, 638: 58–68. DOI: 10.1016/j.tca.2016.06.017.
    [13]
    张邹邹, 何昌辉, 张衡, 等. NC体系发射药烤燃点火的响应特性 [J]. 爆破器材, 2021, 50(1): 38–43. DOI: 10.3969/j.issn.1001-8352.2021.01.007.

    ZHANG Z Z, HE C H, ZHANG H, et al. Ignition response characteristics of NC propellants under cook-off test [J]. Explosive Materials, 2021, 50(1): 38–43. DOI: 10.3969/j.issn.1001-8352.2021.01.007.
    [14]
    KAKAMI A, HIYAMIZU R, SHUZENJI K, et al. Laser-assisted combustion of solid propellants at low pressures [J]. Journal of Propulsion and Power, 2008, 24(6): 1355–1360. DOI: 10.2514/1.36458.
    [15]
    刘强, 张玉成, 张江波, 等. 等离子体点火对高能硝胺发射药点火性能影响研究 [J]. 火工品, 2014(4): 28–32. DOI: 10.3969/j.issn.1003-1480.2014.04.008.

    LIU Q, ZHANG Y C, ZHANG J B, et al. The influence of plasma ignition on the ignition performance of high-energy nitramine gun propellant [J]. Initiators and Pyrotechnics, 2014(4): 28–32. DOI: 10.3969/j.issn.1003-1480.2014.04.008.
    [16]
    肖正刚, 应三九, 周伟良, 等. 低敏感高能发射药等离子体点火研究动态 [J]. 含能材料, 2008, 16(5): 633–638. DOI: 10.3969/j.issn.1006-9941.2008.05.041.

    XIAO Z G, YING S J, ZHOU W L, et al. Progress in plasma ignition of insensitive high energy propellants [J]. Chinese Journal of Energetic Materials, 2008, 16(5): 633–638. DOI: 10.3969/j.issn.1006-9941.2008.05.041.
    [17]
    LI X W, LI R, JIA S L, et al. Study on the characteristics of different plasma ignition schemes [J]. IEEE Transactions on Plasma Science, 2013, 41(1): 214–219. DOI: 10.1109/TPS.2012.2226061.
    [18]
    LI J Q, LITZINGER T A, THYNELL S T. Plasma ignition and combustion of JA2 propellant [J]. Journal of Propulsion and Power, 2005, 21(1): 44–53. DOI: 10.2514/1.5866.
    [19]
    张江波, 肖霞, 赵煜华, 等. 铜丝钛丝电爆炸对硝胺发射药的点火特性 [J]. 火工品, 2022(5): 24–29. DOI: 10.3969/j.issn.1003-1480.2022.05.006.

    ZHANG J B, XIAO X, ZHAO Y H, et al. Ignition characteristics of nitramine propellant by copper wire and titanium wire electric explosion [J]. Initiators & Pyrotechnics, 2022(5): 24–29. DOI: 10.3969/j.issn.1003-1480.2022.05.006.
    [20]
    KOLECZKO A, EHRHARDT W, KELZENBERG S, et al. Plasma ignition and combustion [J]. Propellants, Explosives, Pyrotechnics, 2001, 26(2): 75–83. DOI: 10.1002/1521-4087(200104)26:2<75::AID-PREP75>3.0.CO;2-Q.
    [21]
    陈伟, 郑宇, 王晓鸣, 等. 点火药药量对爆炸能量输出影响的试验研究 [J]. 爆破器材, 2013, 42(4): 10–13. DOI: 10.3969/j.issn.1001-8352.2013.04.003.

    CHEN W, ZHENG Y, WANG X M, et al. Experimental research on the effect of ignition composition quantity on the explosion energy generation [J]. Explosive Materials, 2013, 42(4): 10–13. DOI: 10.3969/j.issn.1001-8352.2013.04.003.
    [22]
    晁李金, 吕秉峰. 点火药量对发射药燃烧性能的影响 [J]. 兵器装备工程学报, 2016, 37(3): 126–128. DOI: 10.11809/scbgxb2016.03.030.

    CHAO L J, LYU B F. Effect of changing ignition dosages on combustion properties of propellants [J]. Journal of Ordnance Equipment Engineering, 2016, 37(3): 126–128. DOI: 10.11809/scbgxb2016.03.030.
    [23]
    赵宝明, 李先, 刘来东, 等. 适用于RGD7A基三层发射药的点火药 [J]. 爆破器材, 2015, 44(3): 51–54. DOI: 10.3969/j.issn.1001-8352.2015.03.012.

    ZHAO B M, LI X, LIU L D, et al. Ignition powders of the three layers gun propellant based on RGD7A [J]. Explosive Materials, 2015, 44(3): 51–54. DOI: 10.3969/j.issn.1001-8352.2015.03.012.
    [24]
    陈晓明, 赵瑛, 宋长文, 等. 发射药燃烧转爆轰的试验研究 [J]. 火炸药学报, 2012, 35(4): 69–72. DOI: 10.3969/j.issn.1007-7812.2012.04.018.

    CHEN X M, ZHAO Y, SONG C W, et al. Experimental study on deflagration to detonation transition of gun propellants [J]. Chinese Journal of Explosives & Propellants, 2012, 35(4): 69–72. DOI: 10.3969/j.issn.1007-7812.2012.04.018.
    [25]
    周浩然. 黑火药爆炸反应方程及其爆炸热化学指标 [J]. 武汉钢铁学院学报, 1981(2): 50–58.

    ZHOU H R. Explosive reaction equation of black powder and its explosive thermochemical index [J]. Journal of Wuhan University of Science and Technology, 1981(2): 50–58.
    [26]
    VERMA M K. Variable energy flux in turbulence [J]. Journal of Physics A: Mathematical and Theoretical, 2022, 55(1): 013002. DOI: 10.1088/1751-8121/ac354e.
    [27]
    李伟锋, 刘海峰, 龚欣. 工程流体力学 [M]. 2版. 上海: 华东理工大学出版社, 2016: 48–49.

    LI W F, LIU H F, GONG X. Engineering fluid mechanics [M]. 2nd ed. Shanghai: East China University of Science and Technology Press, 2016: 48–49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (269) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return