Citation: | ZHANG Suoshuo, NIE Jianxin, ZHANG Jian, SUN Xiaole, GUO Xueyong, ZHANG Tao. Sympathetic detonation of explosive charge in confined space and its protection[J]. Explosion And Shock Waves, 2023, 43(8): 085101. doi: 10.11883/bzycj-2022-0456 |
[1] |
Hazard assessment test for non-nuclear munitions: MIL-STD-2105E [S]. USA: Department of Defense Test Method Standard, 2022.
|
[2] |
Policy for introduction and assessment of insensitive munitions (IM): AOP-39 [S]. NATO Standardization Office (NSO), 2018.
|
[3] |
Sympathetic reaction test procedures for munitions: AOP-4396 [S]. NATO Standardization Office (NSO), 2020.
|
[4] |
周冰, 李良春, 张会旭. 弹药防殉爆包装技术浅析 [J]. 包装工程, 2018, 39(1): 217–222. DOI: 10.19554/j.cnki.1001-3563.2018.01.043.
ZHOU B, LI L C, ZHANG H X. Anti-sympathetic detonation packaging of ammunition [J]. Packaging Engineering, 2018, 39(1): 217–222. DOI: 10.19554/j.cnki.1001-3563.2018.01.043.
|
[5] |
KUBOTA S, OGATA Y, WADA Y, et al. Observation of shock-induced partial reactions in high explosive [J]. Shock Compression of Condensed Matter, 2007, 955: 955–958. DOI: 10.1063/1.2833287.
|
[6] |
陈朗, 王晨, 鲁建英, 等. 炸药殉爆实验和数值模拟 [J]. 北京理工大学学报, 2009, 29(6): 497–500, 524. DOI: 10.15918/j.tbit1001-0645.2009.06.004.
CHEN L, WANG C, LU J Y, et al. Experiment & simulation of sympathetic detonation tests [J]. Transactions of Beijing Institute of Technology, 2009, 29(6): 497–500, 524. DOI: 10.15918/j.tbit1001-0645.2009.06.004.
|
[7] |
王晨, 伍俊英, 陈朗, 等. 壳装炸药殉爆实验和数值模拟 [J]. 爆炸与冲击, 2010, 30(2): 152–158. DOI: 10.11883/1001-1455(2010)02-0152-07.
WANG C, WU J Y, CHEN L, et al. Experiments and numerical simulations of sympathetic detonation of explosives in shell [J]. Explosion and Shock Waves, 2010, 30(2): 152–158. DOI: 10.11883/1001-1455(2010)02-0152-07.
|
[8] |
吉倩, 孔德仁, 高尚, 等. 战斗部殉爆试验多参数存储测试系统 [J]. 测控技术, 2020, 39(3): 84–88. DOI: 10.19708/j.ckjs.2020.03.014.
JI Q, KONG D R, GAO S, et al. Multi-parameter storage test system for warhead sympathetic detonation experiment [J]. Measurement & Control Technology, 2020, 39(3): 84–88. DOI: 10.19708/j.ckjs.2020.03.014.
|
[9] |
胡宏伟, 王健, 卞云龙, 等. 带壳装药水中殉爆特性分析 [J]. 水下无人系统学报, 2022, 30(3): 308–313. DOI: 10.11993/j.issn.2096-3920.2022.03.005.
HU H W, WANG J, BIAN Y L, et al. Experiments of sympathetic detonation performance of explosives with shell in water [J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 308–313. DOI: 10.11993/j.issn.2096-3920.2022.03.005.
|
[10] |
HOWE P M, HUANG Y K, ARBUEKLE A L. A numerical study of detonation propagation between munitions [C]// Proceedings of the 7th Symposium (International) on Detonation. Boston, USA, 1982: 1055–1061.
|
[11] |
CHEN L, WANG C, FENG C G, et al. Study on random initiation phenomenon for sympathetic detonation of explosive [J]. Defence Technology, 2013, 9(4): 224–228. DOI: 10.1016/j.dt.2013.12.002.
|
[12] |
KIM B, KIM M, SUN T, et al. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations [J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5491–5502. DOI: 10.1007/s12206-016-1117-2.
|
[13] |
张立建, 沈飞, 畅博, 等. 典型相似结构柱壳装药殉爆响应数值模拟 [J]. 科学技术与工程, 2021, 21(3): 1003–1010. DOI: 10.3969/j.issn.1671-1815.2021.03.024.
ZHANG L J, SHEN F, CHANG B, et al. Numerical simulation of the sympathetic detonation response od cylindrical shell charge with typical similar structures [J]. Science Technology and Engineering, 2021, 21(3): 1003–1010. DOI: 10.3969/j.issn.1671-1815.2021.03.024.
|
[14] |
田斌, 李如江, 赵家骏, 等. 钢板与泡沫铝复合板弹药包装箱的对比研究 [J]. 兵器装备工程学报, 2019, 40(10): 190–194. DOI: 10.11809/bqzbgcxb2019.10.040.
TIAN B, LI R J, ZHAO J J, et al. Comparative study of steel plate and foam aluminum composite plate ammunition packaging box [J]. Journal of Ordnance Equipment Engineering, 2019, 40(10): 190–194. DOI: 10.11809/bqzbgcxb2019.10.040.
|
[15] |
段晓瑜. 含铝炸药空气中爆炸冲击波特性研究 [D]. 北京: 北京理工大学, 2017: 64. DOI: 10.26948/d.cnki.gbjlu.2017.000047.
|
[16] |
LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. Physics of Fluids. 1980, 23(12): 2362–2372. DOI: 10.1063/1.862940.
|
[17] |
LU J P, LOCHERT I J, KENNEDY D L, et al. Simulation of sympathetic reaction tests for PBXN-109 [C]// Proceedings of 13th International Symposium on Detonation. New York, USA, 2006: 1338–1349.
|
[18] |
方青, 卫玉章, 张克明, 等. 射弹倾斜撞击带盖板炸药引发爆轰的条件 [J]. 爆炸与冲击, 1997, 17(2): 153–158.
FANG Q, WEI Y Z, ZHANG K M, et al. On the projectile oblique-impact initiation conditions for explosive covered with a plate [J]. Explosion and Shock Waves, 1997, 17(2): 153–158.
|
[19] |
梁斌, 冯高鹏, 魏雪婷. 多枚破片冲击引爆带盖板炸药数值模拟分析 [J]. 弹箭与制导学报, 2013, 33(6): 62–66,69. DOI: 10.15892/j.cnki.djzdxb.2013.06.029.
LIANG B, FENG G P, WEI X T. Numerical simulation on shock initiation of composition explosive of cover board subjected to multi-fragment [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(6): 62–66,69. DOI: 10.15892/j.cnki.djzdxb.2013.06.029.
|
[20] |
LUECK M, HEINE A, WICKERT M. Numerical analysis of the initiation of high explosives by interacting shock waves due to multiple fragment impact [C]// Proceedings of the 26th International Symposium on Ballistics. Miami, Florida, USA: National Defense Industrial Association, 2011: 73–81.
|
[1] | LIU Jinchun, WANG Yuying, SUN Ni. Numerical simulation of dynamic response of reinforced masonry wall strengthened with polyurea under gas explosion[J]. Explosion And Shock Waves, 2024, 44(10): 101405. doi: 10.11883/bzycj-2024-0077 |
[2] | CHEN Ya, TAN Chao, GUO Yazhou. Comparative study of numerical simulations of projectile penetration into metal targets[J]. Explosion And Shock Waves, 2022, 42(4): 044201. doi: 10.11883/bzycj-2021-0125 |
[3] | ZHENG Zhihao, REN Huiqi, LONG Zhilin, GUO Ruiqi, CAI Yang, LI Zhijian. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites[J]. Explosion And Shock Waves, 2022, 42(7): 073104. doi: 10.11883/bzycj-2021-0297 |
[4] | YU Qing, ZHANG Hui, YANG Ruizhi. Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA[J]. Explosion And Shock Waves, 2022, 42(2): 024201. doi: 10.11883/bzycj-2021-0214 |
[5] | SONG Ge, LONG Yuan, ZHONG Mingshou, WANG min, WU Jianyu. Similarity relations of underwater explosion in centrifuge and pressurizing vessels[J]. Explosion And Shock Waves, 2019, 39(2): 024102. doi: 10.11883/bzycj-2017-0321 |
[6] | CHEN Yang, WU Liang, ZENG Guowei, ZHOU Junru. Numerical analysis of the water entry process of a projectile with a circular airbag[J]. Explosion And Shock Waves, 2018, 38(5): 1155-1164. doi: 10.11883/bzycj-2017-0387 |
[7] | TAN Zhen, CHEN Pengwan, ZHOU Qiang, ZHU Kui, LIU Wenbin. Enhancement of axial lethality of warhead[J]. Explosion And Shock Waves, 2018, 38(4): 876-882. doi: 10.11883/bzycj-2016-0342 |
[8] | Jian Guozuo, Zeng Qingxuan, Guo Junfeng, Li Bing, Li Mingyu. Simulation of flyers driven by detonation of copper azide[J]. Explosion And Shock Waves, 2016, 36(2): 248-252. doi: 10.11883/1001-1455(2016)02-0248-05 |
[9] | Zhao Xiao-long, Ma Tie-hua, Xu Peng, Fan Jin-biao. Acceleration signal test and analysis for projectile penetrating into concrete[J]. Explosion And Shock Waves, 2014, 34(3): 347-353. doi: 10.11883/1001-1455(2014)03-0347-07 |
[10] | Zhu Jun, Yang Jian-hua, Lu Wen-bo, Chen Ming, Yan Peng. Influences of blasting vibration on the sidewall of underground tunnel[J]. Explosion And Shock Waves, 2014, 34(2): 153-160. doi: 10.11883/1001-1455(2014)02-0153-08 |
[11] | Xu Hao-ming, Gu Wen-bin, Hu Ya-feng, Wang Zhen-xiong, Chen Jiang-Hai. Explosion-proof structures and delay detonation control of tandem explosively formed projectile charges[J]. Explosion And Shock Waves, 2014, 34(6): 723-729. doi: 10.11883/1001-1455(2014)06-0723-07 |
[12] | WuHe-xiang, LiuYing. Influencesofdensitygradientvariationonmechanicalperformances ofdensity-gradedhoneycombmaterials[J]. Explosion And Shock Waves, 2013, 33(2): 163-168. doi: 10.11883/1001-1455(2013)02-0163-06 |
[13] | LAI Ming, FENG Shun-shan, HUANG Guang-yan, BIAN Jiang-nan. Damageofdifferentreinforcedstructures subjectedtounderwatercontactexplosion[J]. Explosion And Shock Waves, 2012, 32(6): 599-604. doi: 10.11883/1001-1455(2012)06-0599-05 |
[14] | HOU Ri-li, ZHOU Pin, PENG Jian-xiang. NumericalsimulationofshockdamageofLY12aluminiumalloysructure[J]. Explosion And Shock Waves, 2012, 32(5): 470-474. doi: 10.11883/1001-1455(2012)05-0470-05 |
[15] | TIAN Yu-bin, LI Zhao, ZHANG Chun-wei. Dynamicresponseofreinforcedmasonrystructureunderblastload[J]. Explosion And Shock Waves, 2012, 32(6): 658-662. doi: 10.11883/1001-1455(2012)06-0658-05 |
[16] | GONG Shu-guang, RAO Gang, WU Xian-hong. Simulationinvestigationonperforationandpenetration basedonEFG method[J]. Explosion And Shock Waves, 2011, 31(6): 658-663. doi: 10.11883/1001-1455(2011)06-0658-06 |
[17] | CHEN Shao-hui, LI Zhi-yuan, LEI Bin, Lü Qing-ao. Numericalsimulationofair/steeltargetinterface effectsonparallelinjectingshapedchargejet[J]. Explosion And Shock Waves, 2011, 31(6): 630-634. doi: 10.11883/1001-1455(2011)06-0630-05 |
[18] | WANG Chen, WU Jun-Ying, CHEN Lang, LU Jian-Ying, GUO Xin, WANG Xiao-Feng. Experiments and numerical simulations of sympathetic detonation of explosives in shell[J]. Explosion And Shock Waves, 2010, 30(2): 152-158. doi: 10.11883/1001-1455(2010)02-0152-07 |
[19] | JIANG Bao-quan, LI Yu-long, LIU Yuan-yong, YU Qing-jun. Effects of SiC particle reinforcement distribution on the penetration of functionally graded armour[J]. Explosion And Shock Waves, 2005, 25(6): 493-498. doi: 10.11883/1001-1455(2005)06-0493-06 |
[20] | MI Shuang-shan, ZHANG Xi-en, TAO Gui-ming. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target[J]. Explosion And Shock Waves, 2005, 25(5): 477-480. doi: 10.11883/1001-1455(2005)05-0477-04 |