ZHOU Guangpan, LIN Zhicheng, WANG Mingyang, FAN Jin, ZHANG Yuye. Test and numerical study on the near-field explosion response of reinforced concrete box girder[J]. Explosion And Shock Waves, 2023, 43(7): 072201. doi: 10.11883/bzycj-2022-0468
Citation: ZHOU Guangpan, LIN Zhicheng, WANG Mingyang, FAN Jin, ZHANG Yuye. Test and numerical study on the near-field explosion response of reinforced concrete box girder[J]. Explosion And Shock Waves, 2023, 43(7): 072201. doi: 10.11883/bzycj-2022-0468

Test and numerical study on the near-field explosion response of reinforced concrete box girder

doi: 10.11883/bzycj-2022-0468
  • Received Date: 2022-10-16
  • Rev Recd Date: 2023-04-28
  • Available Online: 2023-05-12
  • Publish Date: 2023-07-05
  • In order to study the dynamic response and failure characteristics of the concrete girder with single box and three chambers under near-field explosion, the explosion test and numerical simulation of a scaled specimen were carried out. The girder specimen was designed and manufactured by the scale of 1∶3 according to the prototype bridge girder. The bottom of the specimen was supported by six brick supports. The TNT grain was located at 0.4 m above the top plate center of the middle chamber with an equivalent of 3 kg and a proportional distance of 0.77 m/kg1/3. The reflected overpressure, reinforcement strain, vertical displacement and acceleration of bottom plate and the shape of breach were measured and analyzed. The effectiveness of the explosion load in the test was verified by comparing the measured reflection overpressure with the calculated value by the CONWEP empirical formula. The LS-DYNA software was used to simulate the explosion response of the box girder. The SOLIDWORKS software and HYPERMESH software were used to establish the finite element model of the specimen. The Solid 164 element was used to simulate the concrete, and Beam 188 element was used to simulate the steel rebar. The LOAD BLAST ENHANCED (LBE) method was used to apply explosive loads. The *MAT_CONCRETE_DAMAGE_REL3 material model and *MAT_PLASTIC_KINEMATIC model were used to simulate the concrete and rebar, respectively, to consider the effects caused by high strain and large deformation. The keyword *MAT_ADD_EROSION was used to define the failure of concrete. The reliability of numerical simulation method was verified with the test data. Finally, the effects of TNT equivalent, detonation location, concrete strength, and reinforcement ratio on the explosion resistance of the box girder were analyzed. The results show that when a TNT grain of 3 kg is detonated at 0.4 m above the center of the middle chamber of the box girder, an elliptical penetration breach is formed in the center of top plate of the middle chamber, with the length values along the transverse and longitudinal bridge directions being 41.50 and 45.50 cm, respectively. The concrete on the bottom surface of the top plate of the middle chamber peels off in a large area, presenting a trumpet-shaped punching failure feature. The extra-wide cross-section of multi-chamber box girder makes the explosive responses unevenly distributing along the transverse bridge direction. The peak values of vertical displacement and rebar strain of the bottom plate of the girder increase with the increase of the charge. Using the least square method, the corresponding fitting curve expressions are obtained. Under the working conditions of different detonation positions, the vertical displacement of the bottom plate center of the middle chamber is greater than those of the chamber centers on both sides. The results can provide a basis for the anti-explosive evaluation and protection of similar extra-wide concrete box girder.
  • [1]
    YAO S J, ZHAO N, JIANG Z G, et al. Dynamic response of steel box girder under internal blast loading [J]. Advances in Civil Engineering, 2018, 2018: 9676298. DOI: 10.1155/2018/9676298.
    [2]
    杨赞. 爆炸荷载下钢筋混凝土箱梁动态响应研究 [D]. 长沙: 国防科技大学, 2019: 1–2. DOI: 10.27052/d.cnki.gzjgu.2019.001121.

    YANG Z. Dynamic response study of reinforced concrete box girder under blasting loads [D]. Changsha: National University of Defense Technology, 2019: 1–2. DOI: 10.27052/d.cnki.gzjgu.2019.001121.
    [3]
    杜刚. 爆炸荷载作用下钢筋混凝土T梁桥和箱梁桥的动态响应研究 [D]. 武汉: 武汉科技大学, 2018: 1–2.

    DU G. Dynamic analysis of reinforced concrete T and box girder bridge subjected to blast load [D]. Wuhan: Wuhan University of Science and Technology, 2018: 1–2.
    [4]
    刘亚玲, 刘玉存, 耿少波, 等. 钢箱梁结构在爆炸冲击波作用下局部破坏影响因素试验研究 [J]. 振动与冲击, 2018, 37(24): 229–236. DOI: 10.13465/j.cnki.jvs.2018.24.034.

    LIU Y L, LIU Y C, GENG S B, et al. An experimental study on the local damage and influence factors of a steel box girder under explosive shock wave [J]. Journal of Vibration and Shock, 2018, 37(24): 229–236. DOI: 10.13465/j.cnki.jvs.2018.24.034.
    [5]
    耿少波, 刘亚玲, 薛建英. 钢箱梁缩尺模型爆炸冲击波作用下破坏实验研究 [J]. 工程力学, 2017, 34(S1): 84–88. DOI: 10.6052/j.issn.1000-4750.2016.03.S007.

    GENG S B, LIU Y L, XUE J Y. Experimental studies on steel box girder scale model under blast load [J]. Engineering Mechanics, 2017, 34(S1): 84–88. DOI: 10.6052/j.issn.1000-4750.2016.03.S007.
    [6]
    闫秋实, 赵凯凯, 李述涛, 等. 爆炸荷载作用下箱梁的破坏模式与损伤评估 [J]. 北京工业大学学报, 2022, 48(9): 961–967,978. DOI: 10.11936/bjutxb2021080007.

    YAN Q S, ZHAO K K, LI S T, et al. Failure mode and damage assessment of box girder under explosive loading [J]. Journal of Beijing University of Technology, 2022, 48(9): 961–967,978. DOI: 10.11936/bjutxb2021080007.
    [7]
    邱敏杰. 爆炸荷载作用下预应力混凝土桥梁结构的动态响应及破坏机理研究 [D]. 西安: 西安理工大学, 2021: 1–2. DOI: 10.27398/d.cnki.gxalu.2021.001164.

    QIU M J. Research on dynamic response and failure mechanism of prestressed concrete bridge structure under blast load [D]. Xi’an: Xi’an University of Technology, 2021: 1–2. DOI: 10.27398/d.cnki.gxalu.2021.001164.
    [8]
    胡志坚, 李杨, 俞文生, 等. 近场爆炸作用下钢箱梁抗爆性能研究 [J]. 爆破, 2019, 36(1): 117–125,154. DOI: 10.3963/j.issn.1001-487X.2019.01.018.

    HU Z J, LI Y, YU W S, et al. Anti-blast resistance analysis of steel box girder under close-by blast [J]. Blasting, 2019, 36(1): 117–125,154. DOI: 10.3963/j.issn.1001-487X.2019.01.018.
    [9]
    蒋志刚, 朱新明, 严波, 等. 钢箱梁爆炸冲击局部破坏的数值模拟 [J]. 振动与冲击, 2013, 32(13): 159–164. DOI: 10.13465/j.cnki.jvs.2013.13.008.

    JIANG Z G, ZHU X M, YAN B, et al. Numerical simulation for local failure of a steel box girder under blast loading [J]. Journal of Vibration and Shock, 2013, 32(13): 159–164. DOI: 10.13465/j.cnki.jvs.2013.13.008.
    [10]
    IBRAHIM A, SALIM H. Finite-element analysis of reinforced-concrete box girder bridges under close-in detonations [J]. Journal of Performance of Constructed Facilities, 2013, 27(6): 774–784. DOI: 10.1061/(ASCE)CF.1943-5509.0000360.
    [11]
    MA L L, WU H, FANG Q, et al. Displacement-based blast-resistant evaluation for simply-supported RC girder bridge under below-deck explosions [J]. Engineering Structures, 2022, 266: 114637. DOI: 10.1016/j.engstruct.2022.114637.
    [12]
    汪维, 杨建超, 汪剑辉, 等. POZD涂层方形钢筋混凝土板抗接触爆炸试验研究 [J]. 爆炸与冲击, 2020, 40(12): 121402. DOI: 10.11883/bzycj-2020-0180.

    WANG W, YANG J C, WANG J H, et al. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab [J]. Explosion and Shock Waves, 2020, 40(12): 121402. DOI: 10.11883/bzycj-2020-0180.
    [13]
    王明洋, 钱七虎, 赵跃堂. 接触爆炸作用下钢板-钢纤维钢筋混凝土遮弹层设计方法(Ⅱ) [J]. 爆炸与冲击, 2002, 22(2): 163–168. DOI: 10.3321/j.issn:1001-1455.2002.02.012.

    WANG M Y, QIAN Q H, ZHAO Y T. The design method for shelter plate of steel plate and steel fiber reinforced concrete under contact detonation (Ⅱ) [J]. Explosion and Shock Waves, 2002, 22(2): 163–168. DOI: 10.3321/j.issn:1001-1455.2002.02.012.
    [14]
    LIAO Z, LI Z Z, XUE Y L, et al. Study on anti-explosion behavior of high-strength reinforced concrete beam under blast loading [J]. Strength of Materials, 2019, 51(6): 926–938. DOI: 10.1007/s11223-020-00143-4.
    [15]
    CAI R Z, LI Y Z, ZHANG C X, et al. Size effect on reinforced concrete slabs under direct contact explosion [J]. Engineering Structures, 2022, 252: 113656. DOI: 10.1016/j.engstruct.2021.113656.
    [16]
    BRAIMAH A, SIBA F. Near-field explosion effects on reinforced concrete columns: an experimental investigation [J]. Canadian Journal of Civil Engineering, 2018, 45(4): 289–303. DOI: 10.1139/CJCE-2016-0390.
    [17]
    周广盼. 超宽混凝土自锚式悬索桥成桥状态控制与空间力学行为研究 [D]. 南京: 东南大学, 2018: 20–25.

    ZHOU G P. Study of completion state control and spatial mechanics behaviors of self-anchored suspension bridge with extra-wide concrete girder [D]. Nanjing: Southeast University, 2018: 20–25.
    [18]
    中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准GB/T 50152-2012 [S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of concrete structures GB/T 50152-2012 [S]. Beijing: China Architecture & Building Press, 2003.
    [19]
    Department of the Army, the Navy, and the Air Force. TM5-1300, Structures to resist the effects of accidental explosion [M]. NORFOLK, VA USA: Department of the Army Technical Manual, Department of the Navy Publication NAVFAC P-397, Department of the Air Force Manual AFM88-22, 1969: 36–47.
    [20]
    中国工程建设标准化协会. 民用建筑防爆设计标准: T/CECS 736-2020 [S]. 北京: 中国建筑工业出版社, 2020.

    China Association for Engineering Construction Standardization, CECS. Code for explosion-proof design of civil buildings: T/CECS 736-2020 [S]. Beijing: China Architecture & Building Press, 2020.
    [21]
    MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [22]
    师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理 [D]. 天津: 天津大学, 2009: 105–106. DOI: 10.7666/d.y1677822.

    SHI Y C. Dynamic response and damage mechanism of reinforced concrete structures under blast loading [D]. Tianjin: Tianjin University, 2009: 105–106. DOI: 10.7666/d.y1677822.
    [23]
    YUAN S J, HAO H, ZONG Z H, et al. Numerical analysis of axial load effects on RC bridge columns under blast loading [J]. Advances in Structural Engineering, 2021, 24(7): 1399–1414. DOI: 10.1177/1369433220979443.
  • Relative Articles

    [1]XU Zhaowei, WANG Wei, LI Yishuo, ZHANG Zhonghao, ZHANG Congkun. Blast resistance of polyurea/reinforced concrete thick slab composite structures under contact explosion[J]. Explosion And Shock Waves, 2025, 45(3): 033104. doi: 10.11883/bzycj-2024-0083
    [2]SONG Chunming, ZHONG Jiahe, XU Jiwei, WU Xuezhi, CHENG Yihao. Experimental study on dynamic response and failure mode transformation of reinforced concrete beams under impact[J]. Explosion And Shock Waves, 2024, 44(1): 015101. doi: 10.11883/bzycj-2023-0102
    [3]ZHANG Haipeng, PAN Zuanfeng, SI Doudou. Numerical simulation on dynamic response of reinforced concrete beams to secondary explosion[J]. Explosion And Shock Waves, 2024, 44(10): 101404. doi: 10.11883/bzycj-2024-0021
    [4]YU Jun, LIU Fuyu, FANG Qin. Distribution pattern and simplified model of blast load for building columns under near-field near-ground explosion[J]. Explosion And Shock Waves, 2024, 44(1): 015201. doi: 10.11883/bzycj-2022-0366
    [5]ZHANG Shizhong, LI Jinping, KANG Yue, HU Jianqiao, CHEN Hong. Generation of near-field blast wave by means of shock tube[J]. Explosion And Shock Waves, 2024, 44(12): 121434. doi: 10.11883/bzycj-2024-0204
    [6]WU Weichao, XIA Liu, PAN Aigang, WANG Yafei, WANG Qiang. Damage characteristics of reinforced concrete square column components under multi-point simultaneous initiating[J]. Explosion And Shock Waves, 2023, 43(12): 125101. doi: 10.11883/bzycj-2023-0025
    [7]LIU Zhidong, ZHAO Xiaohua, FANG Hongyuan, WANG Gaohui, SHI Mingsheng. Damage mitigation effect of polymer sacrificial cladding on reinforced concrete slabs under blast loading[J]. Explosion And Shock Waves, 2023, 43(2): 023301. doi: 10.11883/bzycj-2022-0435
    [8]ZHAO Xiaohua, LIU Shucan, FANG Hongyuan, SUN Jinshan, SHI Mingsheng. Protective effect of polymer layer on reinforced concrete slabs under an underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125102. doi: 10.11883/bzycj-2023-0033
    [9]WANG Wei, YANG Jianchao, WANG Jianhui, GAO Weiliang, WANG Xing. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab[J]. Explosion And Shock Waves, 2020, 40(12): 121402. doi: 10.11883/bzycj-2020-0180
    [10]WANG Huiming, LIU Fei, YAN Luhui, WANG Jianhui, SHANG Wei, LYU Linmei. Local damage effects of reinforced concrete beams under contact explosions[J]. Explosion And Shock Waves, 2020, 40(12): 121404. doi: 10.11883/bzycj-2020-0171
    [11]SUN Jiachao, CHEN Xiaowei, DENG Yongjun, YAO Yong. Dynamic response of mesoscopic plain/reinforced concrete slabs under blast loading[J]. Explosion And Shock Waves, 2019, 39(11): 113101. doi: 10.11883/bzycj-2018-0506
    [12]YANG Xu, ZHANG Yuye, ZHANG Ning. Dynamic response and damage analysis of precast segmental piers under blast impact[J]. Explosion And Shock Waves, 2019, 39(3): 035104. doi: 10.11883/bzycj-2017-0429
    [13]XU Cimin, YAO Wenjuan, FANG Tingchen. Variational analysis in safety assessment for slab-shaped reinforced concrete structure's load plate in gas explosion[J]. Explosion And Shock Waves, 2018, 38(2): 339-344. doi: 10.11883/bzycj-2016-0231
    [14]Sun Jinshan, Yao Yingkang, Wu Liang, Xie Xianqi, Jia Yongsheng, Han Chuanwei, Liu Changbang. Numerical simulation of water-pressure blasting mechanism in breaking viaduct box girder[J]. Explosion And Shock Waves, 2017, 37(2): 299-306. doi: 10.11883/1001-1455(2017)02-0299-08
    [15]Li Meng-shen, Li Jie, Li Hong, Shi Cun-cheng, Zhang Ning. Deformation and failure of reinforced concrete beams under blast loading[J]. Explosion And Shock Waves, 2015, 35(2): 177-183. doi: 10.11883/1001-1455(2015)02-0177-07
    [16]WANG Wei, ZHANG Duo, LU Fang-yun, TANG Fu-jing, WANG Song-chuan. Anti-explosionperformancesofsquarereinforcedconcreteslabs underclose-inexplosions[J]. Explosion And Shock Waves, 2012, 32(3): 251-258. doi: 10.11883/1001-1455(2012)03-0251-08
    [17]LI Xiao-jun, ZHENG Quan-ping, YANG Yi. Local damage effects of steel fiber reinforced concrete plates subjected to contact explosion[J]. Explosion And Shock Waves, 2009, 29(4): 385-389. doi: 10.11883/1001-1455(2009)04-0385-05
  • Cited by

    Periodical cited type(5)

    1. 耿少波,洪欣,郑毅,沈新月. 质量参数对空爆荷载梁构件振动位移的影响. 爆炸与冲击. 2024(05): 110-120 . 本站查看
    2. 杨万里,张宁,蒋冬启,张国凯,朱锐. 装配式钢结构厂房化爆冲击毁伤效应数值仿真研究. 防护工程. 2024(04): 13-21 .
    3. 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2024. 中国公路学报. 2024(12): 1-160 .
    4. 闫秋实,吕辰旭. VBIED爆炸场景下连续箱梁桥损伤破坏数值模拟研究. 防护工程. 2023(05): 22-27 .
    5. 何勇,戎晓力,吴威涛,王明洋,胡杰,陈思衡,崔佳欢. 数物驱动智能仿真在重要目标毁伤效应评估中的应用. 防护工程. 2023(06): 19-30 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(6)

    Article Metrics

    Article views (614) PDF downloads(169) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return