YAO Xiongliang, ZHOU Yanpei, WANG Zhi, WEI Qingyuan. Critical condition for tensile tearing failure of unidirectional stiffened plate under strong impact load[J]. Explosion And Shock Waves, 2024, 44(2): 023104. doi: 10.11883/bzycj-2023-0182
Citation: LIU Di, GU Yun, SUN Fei, LI Fei, CHEN Shunlu, LIU Qinjie. Directional splitting mechanism of rock based on shaped charge jet[J]. Explosion And Shock Waves, 2023, 43(8): 083303. doi: 10.11883/bzycj-2022-0496

Directional splitting mechanism of rock based on shaped charge jet

doi: 10.11883/bzycj-2022-0496
  • Received Date: 2022-11-07
  • Rev Recd Date: 2023-03-11
  • Available Online: 2023-03-13
  • Publish Date: 2023-08-31
  • Based on the brittle fracture model of rock materials, from the perspective of improving the conversion efficiency of explosive energy to the fracture surface energy of rock materials, it is proposed to use pre-cutting and multi-point shaped charge jet impact on rocks for crack fracturing and propagation, achieving directional rock splitting. A shaped charge that can be used for rock splitting was designed, while the directional splitting mechanism of rock-like brittle materials under the impact of shaped charge jet is studied using numerical method, by which the impact splitting effects of different shapes of high-speed metal rods on rocks are calculated and compared. The formation of the shaped charge jet and the impact fracture process on the rock are analyzed by using numerical simulation, and the optimal shaped charge structure and explosion height for splitting are obtained. In the experiment, 2 shaped charges were used to successfully split the rock samples followed the design direction, and the peak stress on the rock surface obtained from the test were about 0.5−0.8 MPa. The results show that using this shaped charge can form a wedge-shaped metal rod with a length-to-diameter ratio of about 1∶3 at an explosion offset of 25 mm. The shaped charges are set at multiple points along the pre-cutting direction of the designed rock control interface, and at the same time, the wedge-shaped metal rod jets are formed after explosion, which impact the rock and produce a good directional splitting effect. This technology accurately introduces explosive energy into the control interface and converts it into rock fracture surface energy effectively, thereby improving the effective utilization rate of explosives, providing reference for the design of precise control blasting cutting devices for large-scale rock excavation and reducing blasting hazards.
  • [1]
    王飞. CAP1400核岛负挖保护层爆破施工技术探讨 [J]. 煤炭技术, 2015, 34(11): 323–325. DOI: 10.13301/j.cnki.ct.2015.11.125.

    WANG F. Discussion on blasting construction technology of protection layer excavation in cap1400 nuclear island [J]. Coal Technology, 2015, 34(11): 323–325. DOI: 10.13301/j.cnki.ct.2015.11.125.
    [2]
    蒋跃飞, 张正忠, 王璞, 等. 国内石材开采方法综述 [J]. 露天采矿技术, 2014(1): 10–14. DOI: 10.3969/j.issn.1671-9816.2014.01.004.

    JIANG Y F, ZHANG Z Z, WANG P, et al. Summary of domestic stone mining method [J]. Opencast Mining Technology, 2014(1): 10–14. DOI: 10.3969/j.issn.1671-9816.2014.01.004.
    [3]
    姜楠, 徐全军, 龙源, 等. 大孔径静态破碎膨胀压力特性及布孔参数分析 [J]. 爆炸与冲击, 2015, 35(4): 467–472. DOI: 10.11883/1001-1455(2015)04-0467-06.

    JIANG N, XU Q J, LONG Y, et al. Expansive pressure characteristic and borehole parameter analysis on large scale borehole soundless cracking [J]. Explosion and Shock Waves, 2015, 35(4): 467–472. DOI: 10.11883/1001-1455(2015)04-0467-06.
    [4]
    陈礼干, 廖原时. 圆盘锯与串珠锯组合开采石材方法 [J]. 石材, 2009(8): 18–24. DOI: 10.3969/j.issn.1005-3352.2009.08.007.

    CHEN L G, LIAO Y S. Mining stones by circle saw combined with wire saw [J]. Stone, 2009(8): 18–24. DOI: 10.3969/j.issn.1005-3352.2009.08.007.
    [5]
    戴俊. 岩石动力学特性与爆破理论[M]. 北京: 冶金工业出版社, 2002: 304–319.

    DAI J. Dynamic behaviors and blasting theory of rock [M]. Beijing: Metallurgical Industry Press, 2002: 304–319.
    [6]
    张志呈. 定向断裂控制爆破[M]. 重庆: 重庆出版社, 2000: 109–138.

    ZHANG Z C. Directional fracture control of blasting [M]. Chongqing: Chongqing Press, 2000: 109–138.
    [7]
    郭德勇, 赵杰超, 张超, 等. 煤层深孔聚能爆破控制孔作用机制研究 [J]. 岩石力学与工程学报, 2018, 37(4): 919–930. DOI: 10.13722/j.cnki.jrme.2017.1038.

    GUO D Y, ZHAO J C, ZHANG C, et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 919–930. DOI: 10.13722/j.cnki.jrme.2017.1038.
    [8]
    肖正学, 张志呈, 郭学彬. 断裂控制爆破裂纹发展规律的研究 [J]. 岩石力学与工程学报, 2002, 21(4): 546–549. DOI: 10.3321/j.issn:1000-6915.2002.04.019.

    XIAO Z X, ZHANG Z C, GUO X B. Research on crack developing law of rock fracture controlled blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4): 546–549. DOI: 10.3321/j.issn:1000-6915.2002.04.019.
    [9]
    申涛, 罗宁, 向俊庠, 等. 切缝药包爆炸作用机理数值模拟 [J]. 爆炸与冲击, 2018, 38(5): 1172–1180. DOI: 10.11883/bzycj-2017-0410.

    SHEN T, LUO N, XIANG J X, et al. Numerical simulation on explosion mechanism of split-tube charge holders [J]. Explosion and Shock Waves, 2018, 38(5): 1172–1180. DOI: 10.11883/bzycj-2017-0410.
    [10]
    李清. 爆炸致裂的岩石动态力学行为与断裂控制试验研究[D]. 北京: 中国矿业大学(北京), 2009: 114–124.

    LI Q. Experiment of fracture behaviors and control for crackpropagation under blasting load [D]. Beijing: China University of Mining and Technology (Beijing), 2009: 114–124.
    [11]
    李清, 郭阳, 刘航, 等. 切槽定向断裂控制爆破的数值模拟研究 [J]. 矿业研究与开发, 2015, 35(12): 79–83. DOI: 10.13827/j.cnki.kyyk.2015.12.018.

    LI Q, GUO Y, LIU H, et al. Numerical simulation on pre-notched directional fracture blast [J]. Mining R& D, 2015, 35(12): 79–83. DOI: 10.13827/j.cnki.kyyk.2015.12.018.
    [12]
    刘敦文, 蔡才武, 唐宇, 等. 微风化花岗岩多向聚能爆破破岩试验研究 [J]. 工程爆破, 2020, 26(2): 9–16. DOI: 10.3969/j.issn.1006-7051.2020.02.002.

    LIU D W, CAI C W, TANG Y, et al. Experimental study on rock breaking by multi-direction cumulative blasting of slightly weathered granite [J]. Engineering Blasting, 2020, 26(2): 9–16. DOI: 10.3969/j.issn.1006-7051.2020.02.002.
    [13]
    LUO Y, ZHAO S W. Study on orientation fracture blasting with shaped charge in rock [J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2006, 13(3): 193–198. DOI: 10.1016/s1005-8850(06)60042-x.
    [14]
    YIN Y, SUN Q, ZOU B P, et al. Numerical study on an innovative shaped charge approach of rock blasting and the timing sequence effect in microsecond magnitude [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4523–4542. DOI: 10.1007/s00603-021-02516-w.
    [15]
    SHU Y, SHAO P, LI Z H, et al. Linear hypercumulation formation mechanism for π-type shaped charge [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(3): e202100162. DOI: 10.1002/prep.202100162.
    [16]
    陈伟. 环向聚能装药的数值模似与应用研究 [D]. 合肥: 中国科学技术大学, 2015: 65–66.

    CHEN W. Numerical simulation and application of radial shaped charge [D]. Hefei: University of Science and Technology of China, 2015: 65–66.
    [17]
    杨仁树, 王雁冰, 岳中文, 等. 定向断裂双孔爆破裂纹扩展的动态行为 [J]. 爆炸与冲击, 2013, 33(6): 631–637. DOI: 10.11883/1001-1455(2013)06-0631-07.

    YANG R S, WANG Y B, YUE Z W, et al. Dynamic behaviors of crack propagation in directional fracture blasting with two holes [J]. Explosion and Shock Waves, 2013, 33(6): 631–637. DOI: 10.11883/1001-1455(2013)06-0631-07.
    [18]
    张金浩. 高应力条件下坚硬脆性岩石断裂特性研究[D]. 重庆: 重庆交通大学, 2020: 17–25.

    ZHANG J H. Study on fracture characteristics of hard and brittle rock under high stress[D]. Chongqing: Chongqing Jiaotong University, 2020: 17–25.
    [19]
    ANDERSON T L. Fracture Mechanics Fundamentals and Applications [M]. ThirdEdition. Boca Raton, FL, USA: Taylor & Francis Group, 2005: 64–65.
    [20]
    黄维扬. 含裂纹半无限大板受集中力作用的应力强度因子 [J]. 航空学报, 1992, 13(3): 170–176.

    HUANG W Y. Stress intensity factors for a semi-infinite plate with a crack under concentrated forces [J]. Acta Aeronautica et Astronautic Sinica, 1992, 13(3): 170–176.
  • Relative Articles

    [1]WANG Xiaofeng, TAO Gang, REN Baoxiang, PANG Chunqiao, FAN Qiang, LIU Long. Mechanical parameters of the overwhelm process of fluted liner for 30 mm rifled gun based on SPH method[J]. Explosion And Shock Waves, 2019, 39(1): 012201. doi: 10.11883/bzycj-2017-0291
    [2]HE Manchao, GUO Pengfei, ZHANG Xiaohu, WANG Jiong. Directional pre-splitting of roadway roof based on the theory of bilateral cumulative tensile explosion[J]. Explosion And Shock Waves, 2018, 38(4): 795-803. doi: 10.11883/bzycj-2016-0359
    [3]WANG Changli, MA Kun, ZHOU Gang, CHU Zhe, WANG Kehui, CHEN Chunlin, ZHAO Nan, LI Mingrui, FENG Na. Damage effect of cabin near shipboard under shaped charge exploding underwater[J]. Explosion And Shock Waves, 2018, 38(5): 1145-1154. doi: 10.11883/bzycj-2017-0119
    [4]Li Rujiang, Chai Yanjun, Han Hongwei, Liu Tiansheng. Protective performance of explosive reactive armor with composite rubber armor as front or back plate[J]. Explosion And Shock Waves, 2017, 37(4): 637-642. doi: 10.11883/1001-1455(2017)04-0637-06
    [5]Wu Shuangzhang, Gu Wenbin, Li Xufeng. Penetration of steel ingot by linear shaped charge with cuniform cove[J]. Explosion And Shock Waves, 2016, 36(3): 353-358. doi: 10.11883/1001-1455(2016)03-0353-06
    [6]Xu Zhenyang, Yang Jun, Guo Lianjun. Study of the splitting crack propagation morphology using high-speed 3D DIC[J]. Explosion And Shock Waves, 2016, 36(3): 400-406. doi: 10.11883/1001-1455(2016)03-0400-07
    [7]Li Ru-jiang, Han Hong-wei, Sun Su-jie, Liu Tian-sheng. Ballistic resistance capabilities of explosive reactive armors encapsulated by ceramic layers[J]. Explosion And Shock Waves, 2014, 34(1): 47-51. doi: 10.11883/1001-1455(2014)01-0047-05
    [8]ZHENG Yu, WANG Xiao-ming, LI Wen-bin, MIAO Qin-shu, LI Wei-bing. FormationofshapedchargewithdoublelayerlinersintotandemEFP[J]. Explosion And Shock Waves, 2012, 32(1): 29-33. doi: 10.11883/1001-1455(2012)01-0029-05
    [9]DUAN Zhuo-ping, WEN Li-jing, ZHANG Lian-sheng, HUANG Feng-lei. Performancetestandapplicationofthemulti-pointringinitiator forashapedcharge[J]. Explosion And Shock Waves, 2010, 30(6): 664-668. doi: 10.11883/1001-1455(2010)06-0664-05
    [10]ZHANG Xian-feng, DING Jian-bao, ZHAO Xiao-ning. Numerical simulation of double layer shaped charge[J]. Explosion And Shock Waves, 2009, 29(6): 617-624. doi: 10.11883/1001-1455(2009)06-0617-08
    [11]HUANG Feng-lei, ZHANG Lei-lei, DUAN Zhuo-ping. Shaped charge with large cone angle for concrete target[J]. Explosion And Shock Waves, 2008, 28(1): 17-22. doi: 10.11883/1001-1455(2008)01-0017-06
    [12]ZHANG Xian-feng, CHEN Hui-wu, HE Yong, HUANG Zheng-xiang. Study on a tandem shaped charge technique to reinforce concrete[J]. Explosion And Shock Waves, 2008, 28(3): 207-302. doi: 10.11883/1001-1455(2008)03-0207-06
    [13]FENG Qi-jing, HAO Peng-cheng, HANG Yi-hong, HE Chang-jiang, Lv Ji-xiang, JIANG Jian-sheng, LIANG Long-he. Eulerian numerical simulation of a shaped charge[J]. Explosion And Shock Waves, 2008, 28(2): 138-143. doi: 10.11883/1001-1455(2008)02-0138-06
    [14]LUO Yong, SHEN Zhao-wu. Application study on directional fracture controlled blasting with shaped charge in rock[J]. Explosion And Shock Waves, 2006, 26(3): 250-255. doi: 10.11883/1001-1455(2006)03-0250-06
  • Cited by

    Periodical cited type(3)

    1. 付猛,苏炎,周贺友,张金贵. 隧道静态破碎开挖施工中液压劈裂技术应用研究. 建筑机械. 2025(01): 156-161 .
    2. 毛羽,侯超普,徐士超,李彬,顾云,程建辉,刘迪. 抽水蓄能电站主机房底板精确控界切割技术研究. 工程爆破. 2024(03): 121-127 .
    3. 刘朕,杨仁树,左进京,赵勇,翟柏洋,宋国康,王玉富,王南南,祝贺超. 新型双聚能药包裂纹扩展规律及周边控制爆破试验研究. 中国矿业大学学报. 2024(06): 1171-1184+1197 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (504) PDF downloads(166) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return