Volume 43 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
LI Pengcheng, ZHANG Xianfeng, WANG Guiji, LIU Chuang, LIU Junwei, DENG Yuxuan, SHENG Qiang. Dynamic cratering process during penetration of rigid projectile into concrete target[J]. Explosion And Shock Waves, 2023, 43(9): 091402. doi: 10.11883/bzycj-2022-0512
Citation: LI Pengcheng, ZHANG Xianfeng, WANG Guiji, LIU Chuang, LIU Junwei, DENG Yuxuan, SHENG Qiang. Dynamic cratering process during penetration of rigid projectile into concrete target[J]. Explosion And Shock Waves, 2023, 43(9): 091402. doi: 10.11883/bzycj-2022-0512

Dynamic cratering process during penetration of rigid projectile into concrete target

doi: 10.11883/bzycj-2022-0512
  • Received Date: 2022-11-13
  • Rev Recd Date: 2022-12-19
  • Available Online: 2023-02-08
  • Publish Date: 2023-09-11
  • In order to study the cratering stage in the dynamic penetration process of projectiles into the concrete targets, the cratering stage is further divided into two phases according to the damage of the projectile during penetration. Combined with the shape function of projectile head, streamline field of the Z model and normal expansion theory (NET), an analytical and calculation model of penetration resistance during the cratering stage is established, which considers the influence of concrete ejection process. Reliability of penetration resistance model during the cratering stage is then verified by test data taken from published papers. The advantages of the present model compared with the existing classical model are analyzed, while the influences of initial impact velocity of projectile, the caliber-radius-head and uniaxial compressive strength of concrete on the dynamic process during the cratering stage are analyzed. With the increase of the initial impact velocity of projectile, the diameter and depth of the ejection region gradually increase, the time of the ejection region to reach the maximum size is gradually shortened, and the time of the dynamic process during the cratering stage is also shortened. With the increase of the caliber-radius-head of the projectile, the diameter and depth of the ejection region gradually decrease, the time of the ejection region to reach the maximum size gradually increases, and the time of the dynamic process during the cratering stage increases, too. With the increase of uniaxial compressive strength of concrete, the diameter and depth of the ejection region are gradually reduced, the time of the ejection region to reach the maximum size is gradually shortened, and the time of the dynamic process during the cratering stage is also shortened. The velocity has the greatest influence on the dynamic process during the cratering stage of the projectile penetration into the concrete target, followed by the caliber-radius-head of the projectile and uniaxial compressive strength of concrete.
  • loading
  • [1]
    吴昊, 方秦, 龚自明, 等. 应用改进的双剪强度理论分析岩石靶体的弹体侵彻深度 [J]. 工程力学, 2009, 26(8): 216–222.

    WU H, FANG Q, GONG Z M, et al. Analysis on penetration depth of projectiles into rock targets based on the improved twin shear strength theory [J]. Engineering Mechanics, 2009, 26(8): 216–222.
    [2]
    薛建锋, 沈培辉, 王晓鸣. 弹体侵彻混凝土开坑阶段阻力的计算 [J]. 高压物理学报, 2016, 30(6): 499–504. DOI: 10.11858/gywlxb.2016.06.010.

    XUE J F, SHEN P H, WANG X M. Resistance during cratering for projectile penetrating into concrete target [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 499–504. DOI: 10.11858/gywlxb.2016.06.010.
    [3]
    LIU C, ZHANG X F, CHEN H H, et al. Experimental and theoretical study on steel long-rod projectile penetration into concrete targets with elevated impact velocities [J]. International Journal of Impact Engineering, 2020, 138: 103482. DOI: 10.1016/j.ijimpeng.2019.103482.
    [4]
    LU Y Y, ZHANG Q M, XUE Y J, et al. Hypervelocity penetration of concrete targets with long-rod steel projectiles: experimental and theoretical analysis [J]. International Journal of Impact Engineering, 2021, 148: 103742. DOI: 10.1016/j.ijimpeng.2020.103742.
    [5]
    周宁, 任辉启, 沈兆武, 等. 弹丸侵彻混凝土和钢筋混凝土的实验 [J]. 中国科学技术大学学报, 2006, 36(10): 1021–1027. DOI: 10.3969/j.issn.0253-2778.2006.10.001.

    ZHOU N, REN H Q, SHEN Z W, et al. Experimental on the projectile penetration concrete targets and reinforced concrete targets [J]. Journal of University of Science and Technology of China, 2006, 36(10): 1021–1027. DOI: 10.3969/j.issn.0253-2778.2006.10.001.
    [6]
    周宁, 任辉启, 沈兆武, 等. 卵形头部弹丸侵彻钢筋混凝土的工程解析模型 [J]. 振动与冲击, 2007, 26(4): 73–76. DOI: 10.3969/j.issn.1000-3835.2007.04.017.

    ZHOU N, REN H Q, SHEN Z W, et al. Engineering analytical model for ogive-nose projectiles to penetrate into semi-infinite reinforced concrete targets [J]. Journal of Vibration and Shock, 2007, 26(4): 73–76. DOI: 10.3969/j.issn.1000-3835.2007.04.017.
    [7]
    黄民荣, 顾晓辉, 高永宏. 刚性弹丸侵彻钢筋混凝土的实验和简化分析模型 [J]. 实验力学, 2009, 24(4): 283–290.

    HUANG M R, GU X H, GAO Y H. Experiment and simplified analytical model for penetration of rigid projectile in a reinforced concrete target [J]. Journal of Experimental Mechanics, 2009, 24(4): 283–290.
    [8]
    WU H J, WANG Y N, HUANG F L. Penetration concrete targets experiments with non-ideal & high velocity between 800 and 1100 m/s [J]. International Journal of Modern Physics B, 2008, 22(9/10/11): 1087–1093. DOI: 10.1142/S0217979208046360.
    [9]
    吕映庆, 陈南勋, 武海军, 等. 弹体高速侵彻超高性能混凝土靶机理 [J]. 兵工学报, 2022, 43(1): 37–47. DOI: 10.3969/j.issn.1000-1093.2022.01.005.

    LV Y Q, CHEN N X, WU H J, et al. Mechanism of high-velocity projectile penetrating into ultra-high performance concrete target [J]. Acta Armamentarii, 2022, 43(1): 37–47. DOI: 10.3969/j.issn.1000-1093.2022.01.005.
    [10]
    王杰, 武海军, 周婕群, 等. 长杆弹超高速侵彻半无限混凝土靶实验研究及开坑分析 [J]. 爆炸与冲击, 2020, 40(9): 093301. DOI: 10.11883/bzycj-2019-0439.

    WANG J, WU H J, ZHOU J Q, et al. Experiment research and crater analysis of long rod hypervelocity penetration into concrete [J]. Explosion and Shock Waves, 2020, 40(9): 093301. DOI: 10.11883/bzycj-2019-0439.
    [11]
    张雪岩, 武海军, 李金柱, 等. 弹体高速侵彻两种强度混凝土靶的对比研究 [J]. 兵工学报, 2019, 40(2): 276–283. DOI: 10.3969/j.issn.1000-1093.2019.02.007.

    ZHANG X Y, WU H J, LI J Z, et al. Comparative study of projectiles penetrating into two kinds of concrete targets at high velocity [J]. Acta Armamentarii, 2019, 40(2): 276–283. DOI: 10.3969/j.issn.1000-1093.2019.02.007.
    [12]
    闪雨. 弹体非正侵彻混凝土质量侵蚀与运动轨迹研究 [D]. 北京: 北京理工大学, 2015.

    SHAN Y. Investigation on the mass abrasion and motion of the projectile non-normal penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2015.
    [13]
    FORRESTAL M J, LUK V K. Penetration into soil targets [J]. International Journal of Impact Engineering, 1992, 12(3): 427–444. DOI: 10.1016/0734-743X(92)90167-R.
    [14]
    FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
    [15]
    QIAN L X, YANG Y B, LIU T. A semi-analytical model for truncated-ogive-nose projectiles penetration into semi-infinite concrete targets [J]. International Journal of Impact Engineering, 2000, 24(9): 947–955. DOI: 10.1016/S0734-743X(00)00008-7.
    [16]
    吴祥云, 李永池, 何翔, 等. 细长弹体侵彻混凝土的机理研究 [J]. 岩石力学与工程学报, 2003, 22(11): 1817–1822. DOI: 10.3321/j.issn:1000-6915.2003.11.013.

    WU X Y, LI Y C, HE X, et al. On mechanism of slender projectile penetrating into concrete [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1817–1822. DOI: 10.3321/j.issn:1000-6915.2003.11.013.
    [17]
    温志鹏, 王玉祥, 吕本明, 等. 弹体垂直侵彻混凝土介质开坑深度的计算方法 [J]. 常州工学院学报, 2005, 18(S1): 82–84. DOI: 10.3969/j.issn.1671-0436.2005.z1.016.
    [18]
    刘海鹏, 高世桥, 金磊. 弹丸侵彻混凝土靶板成坑实验及量纲分析 [C]//第十届全国冲击动力学讨论会论文集. 太原: 中国力学学会爆炸力学专业委员会冲击动力学专业组, 2011.
    [19]
    刘海鹏, 高世桥, 金磊. 弹侵彻混凝土靶面成坑机理分析 [C]//第六届全国强动载效应及防护学术会议暨2014年复杂介质/结构的动态力学行为创新研究群体学术研讨会论文集. 北京: 中国力学学会爆炸力学专业委员会, 2014.
    [20]
    李明, 王可慧, 邹慧辉, 等. 弹体侵彻厚混凝土靶迎弹面成坑效应 [J]. 爆炸与冲击, 2022, 42(8): 083302. DOI: 10.11883/bzycj-2021-0294.

    LI M, WANG K H, ZOU H H, et al. Crater morphology of a projectile penetrating a thick concrete target [J]. Explosion and Shock Waves, 2022, 42(8): 083302. DOI: 10.11883/bzycj-2021-0294.
    [21]
    刘海鹏, 高世桥, 金磊, 等. 弹侵彻混凝土靶面成坑的分阶段分析 [J]. 兵工学报, 2009, 30(S2): 52–56.

    LIU H P, GAO S Q, JIN L, et al. Phase analysis on crater-forming of projectile penetrating into concrete target [J]. Acta Armamentarii, 2009, 30(S2): 52–56.
    [22]
    ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified kong-fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [23]
    ABDEL-KADER M. Modified settings of concrete parameters in RHT model for predicting the response of concrete panels to impact [J]. International Journal of Impact Engineering, 2019, 132(10): 103312. DOI: 10.1016/j.ijimpeng.2019.06.001.
    [24]
    SHIN W, PARK H, HAN J. Improvement of the dynamic failure behavior of concrete subjected to projectile impact using user-defined material model [J]. Construction and Building Materials, 2022, 332: 127343. DOI: 10.1016/j.conbuildmat.2022.127343.
    [25]
    XU L Y, XU H, WEN H M. On the penetration and perforation of concrete targets struck transversely by ogival-nosed projectiles-a numerical study [J]. International Journal of Impact Engineering, 2019, 125: 39–55. DOI: 10.1016/j.ijimpeng.2018.11.001.
    [26]
    LIU J, LI J, FANG J G, et al. Ultra-high performance concrete targets against high velocity projectile impact-a-state-of-the-art review [J]. International Journal of Impact Engineering, 2022, 160: 104080. DOI: 10.1016/j.ijimpeng.2021.104080.
    [27]
    YU R, SPIESZ P, BROUWERS H J H. Energy absorption capacity of a sustainable ultra-high performance fibre reinforced concrete (UHPFRC) in quasi-static mode and under high velocity projectile impact [J]. Cement and Concrete Composites, 2016, 68: 109–122. DOI: 10.1016/j.cemconcomp.2016.02.012.
    [28]
    FENG J, GAO X D, LI J Z, et al. Penetration resistance of hybrid-fiber-reinforced high-strength concrete under projectile multi-impact [J]. Construction and Building Materials, 2019, 202: 341–352. DOI: 10.1016/j.conbuildmat.2019.01.038.
    [29]
    WARREN T L. Simulations of the penetration of limestone targets by ogive-nose 4340 steel projectiles [J]. International Journal of Impact Engineering, 2002, 27(5): 475–496. DOI: 10.1016/s0734-743x(01)00154-3.
    [30]
    ROSENBERG Z, DEKEL E. The deep penetration of concrete targets by rigid rods-revisited [J]. International Journal of Protective Structures, 2010, 1(1): 125–144. DOI: 10.1260/2041-4196.1.1.125.
    [31]
    YANKELEVSKY D, FELDGUN V. The embedment of a high velocity rigid ogive nose projectile into a concrete target [J]. International Journal of Impact Engineering, 2020, 144: 103631. DOI: 10.1016/j.ijimpeng.2020.103631.
    [32]
    柴传国, 皮爱国, 武海军, 等. 卵形弹体侵彻混凝土开坑区侵彻阻力计算 [J]. 爆炸与冲击, 2014, 34(5): 630–635. DOI: 10.11883/1001-1455(2014)05-0630-06.

    CHAI C G, PI A G, WU H J, et al. A calculation of penetration resistance during cratering for ogive-nose projectile into concrete [J]. Explosion and Shock Waves, 2014, 34(5): 630–635. DOI: 10.11883/1001-1455(2014)05-0630-06.
    [33]
    王丽梅, 邓国强, 王安宝. 长杆卵形弹正入射半无限靶侵彻阻力的计算 [C]//第22届全国结构工程学术会议论文集. 乌鲁木齐: 中国力学学会, 2013.
    [34]
    MAXWELL D E. Simple Z model for cratering, ejection, and the overturned flap [M]//RODDY D J, PEPIN R O, MERRILL R B. Impact and Explosion Cratering. New York: Pergamon Press, 1976: 1003–1008.
    [35]
    GAO S Q, LIU H P, JIN L. A fuzzy model of the penetration resistance of concrete targets [J]. International Journal of Impact Engineering, 2009, 36(4): 644–649. DOI: 10.1016/j.ijimpeng.2008.03.008.
    [36]
    王明洋, 邱艳宇, 李杰, 等. 超高速长杆弹对岩石侵彻、地冲击效应理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(3): 564–572. DOI: 10.13722/j.cnki.jrme.2017.1348.

    WANG M Y, QIU Y Y, LI J, et al. Theoretical and experimental study on penetration in rock and ground impact effects of long rod projectiles of hyper speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 564–572. DOI: 10.13722/j.cnki.jrme.2017.1348.
    [37]
    李国旺. 主带彗星砾石堆组构动能侵彻效应研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.002205.

    LI G W. Research on the kinetic penetrating effects in the main-belt comet rubble pile structure [D]. Harbin: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.002205.
    [38]
    KUROSAWA K, TAKADA S. Impact cratering mechanics: a forward approach to predicting ejecta velocity distribution and transient crater radii [J]. Icarus, 2019, 317: 135–147. DOI: 10.1016/j.icarus.2018.06.021.
    [39]
    KUROSAWA K, OKAMOTO T, GENDA H. Hydrocode modeling of the spallation process during hypervelocity impacts: implications for the ejection of Martian meteorites [J]. Icarus, 2018, 301: 219–234. DOI: 10.1016/j.icarus.2017.09.015.
    [40]
    FU H, GAO S Q, JIN L, et al. Research on the acceleration phenomenon of projectile leaving the target when penetrating thick concrete target [J]. International Journal of Impact Engineering, 2022, 164: 104191. DOI: 10.1016/j.ijimpeng.2022.104191.
    [41]
    王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.

    WANG Wenjie, ZHANG Xianfeng, DENG Jiajie, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (420) PDF downloads(216) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return