Volume 43 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
GAO Weiting, ZHU Zheming, ZHU Wei, ZOU Ming. Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review[J]. Explosion And Shock Waves, 2023, 43(8): 081101. doi: 10.11883/bzycj-2022-0526
Citation: GAO Weiting, ZHU Zheming, ZHU Wei, ZOU Ming. Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review[J]. Explosion And Shock Waves, 2023, 43(8): 081101. doi: 10.11883/bzycj-2022-0526

Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review

doi: 10.11883/bzycj-2022-0526
  • Received Date: 2022-11-20
  • Rev Recd Date: 2023-04-07
  • Available Online: 2023-05-05
  • Publish Date: 2023-08-31
  • Dynamic fracture behavior is a crucial aspect in rock mechanics and engineering, with significant implications to the safety and effectiveness of structures in fields such as mining and civil engineering. In recent years, significant progress has been made in the study of dynamic crack propagation in rock materials, and the aim of this study is to provide a comprehensive review and summary on the latest achievements in testing techniques, experimental facility, and experimental methods. Various measurement techniques have been developed for dynamic rock crack propagation testing, including X-ray computed tomography, caustics method, digital image correlation method, crack propagation gauge, conductive carbon film test method and acoustic emission. Each of these techniques has advantages and limitations, and the selection of the appropriate technique depends on the specific experimental requirements and constraints. The dynamic fracture behavior in rock under different strain rates has been studied extensively by numerous researchers. The strain rate is a crucial parameter that determines the deformation and failure mechanisms of rocks under dynamic load. The dynamic fracture properties in rock under middle and low strain rates, high strain rates, and ultra-high strain rates have been systematically summarized. The experimental methods used for dynamic fracture testing include the drop-hammer impact device, split Hopkinson pressure bar system, and explosion tests. The failure properties of crack initiation, propagation, arrest behaviors, and dynamic fracture toughness of rocks under different strain rates have been investigated. In conclusion, the study of dynamic crack propagation in rock is a challenging and important field of research in rock mechanics and rock engineering. The development of new experimental techniques and methods has been enabling researchers to gain a deeper understanding of the complex behavior of cracks in rock under dynamic loads. The findings of these studies have important implications for the design of safe and reliable structures in various fields of practical engineering.
  • loading
  • [1]
    AZIZNEJAD S, ESMAIELI K, HADJIGEORGIOU J, et al. Responses of jointed rock masses subjected to impact loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4): 624–634. DOI: 10.1016/j.jrmge.2017.12.006.
    [2]
    李地元, 万千荣, 朱泉企, 等. 不同加载方式下含预制裂隙岩石力学特性及破坏规律试验研究 [J]. 采矿与安全工程学报, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.

    LI D Y, WAN Q R, ZHU Q Q, et al. Experimental study on mechanical properties and failure behaviour of fractured rocks under different loading methods [J]. Journal of Mining and Safety Engineering, 2021, 38(5): 1025–1035. DOI: 10.13545/j.cnki.jmse.2021.0187.
    [3]
    王思敬. 论岩石的地质本质性及其岩石力学演绎 [J]. 岩石力学与工程学报, 2009, 28(3): 433–450. DOI: 10.3321/j.issn:1000-6915.2009.03.001.

    WANG S J. Geological nature of rock and its deduction for rock mechanics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 433–450. DOI: 10.3321/j.issn:1000-6915.2009.03.001.
    [4]
    KONG R, FENG X T, ZHANG X W, et al. Study on crack initiation and damage stress in sandstone under true triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 117–123. DOI: 10.1016/j.ijrmms.2018.04.019.
    [5]
    NARA Y, KASHIWAYA K, NISHIDA Y, et al. Influence of surrounding environment on subcritical crack growth in marble [J]. Tectonophysics, 2017, 706/707: 116–128. DOI: 10.1016/j.tecto.2017.04.008.
    [6]
    SWANSON P L. Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B6): 4137–4152. DOI: 10.1029/JB089iB06p04137.
    [7]
    冯夏庭, 丁梧秀. 应力-水流-化学耦合下岩石破裂全过程的细观力学试验 [J]. 岩石力学与工程学报, 2005, 24(9): 1465–1473. DOI: 10.3321/j.issn:1000-6915.2005.09.002.

    FENG X T, DING W X. Meso-mechanical experiment of microfracturing process of rock under coupled mechanical-hydrological-chemical environment [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1465–1473. DOI: 10.3321/j.issn:1000-6915.2005.09.002.
    [8]
    DONG Y Q, ZHU Z M, ZHOU L, et al. Study of mode Ⅰ crack dynamic propagation behaviour and rock dynamic fracture toughness by using SCT specimens [J]. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41(8): 1810–1822. DOI: 10.1111/ffe.12823.
    [9]
    YANG R S, DING C X, LI Y L, et al. Crack propagation behavior in slit charge blasting under high static stress conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 117–123. DOI: 10.1016/j.ijrmms.2019.05.002.
    [10]
    ZHU Z M, WANG C, KANG J M, et al. Study on the mechanism of zonal disintegration around an excavation [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 88–95. DOI: 10.1016/j.ijrmms.2013.12.017.
    [11]
    王飞, 王蒙, 朱哲明, 等. 冲击荷载下岩石裂纹动态扩展全过程演化规律研究 [J]. 岩石力学与工程学报, 2019, 38(6): 1139–1148. DOI: 10.13722/j.cnki.jrme.2018.1172.

    WANG F, WANG M, ZHU Z M, et al. Study on evolution law of rock crack dynamic propagation in complete process under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1139–1148. DOI: 10.13722/j.cnki.jrme.2018.1172.
    [12]
    LIANG Z Z, XING H, WANG S Y, et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw [J]. Computers and Geotechnics, 2012, 45: 19–33. DOI: 10.1016/j.compgeo.2012.04.011.
    [13]
    PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of Bukit Timah granite using grain-based model [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135–154. DOI: 10.1007/s00603-017-1316-x.
    [14]
    李博, 朱强, 张丰收, 等. 基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2021, 40(6): 1119–1131. DOI: 10.13722/j.cnki.jrme.2020.0754.

    LI B, ZHU Q, ZHANG F S, et al. Study on crack propagation of heterogeneous rocks with double flaws based on grain based model [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1119–1131. DOI: 10.13722/j.cnki.jrme.2020.0754.
    [15]
    KAWAMOTO T, AYDAN Ö. A review of numerical analysis of tunnels in discontinuous rock masses [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(13): 1377–1391. DOI: 10.1002/(SICI)1096-9853(199911)23:13<1377::AID-NAG932>3.0.CO;2-S.
    [16]
    BAŽANT Z P. Concrete fracture models: testing and practice [J]. Engineering Fracture Mechanics, 2002, 69(2): 165–205. DOI: 10.1016/S0013-7944(01)00084-4.
    [17]
    岳中文, 陈彪, 杨仁树. 冲击载荷下岩石材料动态断裂韧性测试研究进展 [J]. 工程爆破, 2015, 21(6): 60–66. DOI: 10.3969/j.issn.1006-7051.2015.06.011.

    YUE Z W, CHEN B, YANG R S. Development and new achievements on rock dynamic fracture toughness testing under impact load [J]. Engineering Blasting, 2015, 21(6): 60–66. DOI: 10.3969/j.issn.1006-7051.2015.06.011.
    [18]
    赵洪宝, 胡桂林, 李伟, 等. 预制裂隙岩石裂纹扩展规律的研究进展与思考 [J]. 地下空间与工程学报, 2016, 12(S2): 899–906.

    ZHAO H B, HU G L, LI W, et al. Research progress and thinking on the crack propagation law of pre-fractured rock [J]. Chinese Journal of Underground Space and Engineering, 2016, 12(S2): 899–906.
    [19]
    LIU Y, DAI F. A review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5): 1203–1230. DOI: 10.1016/j.jrmge.2021.03.012.
    [20]
    CERFONTAINE B, COLLIN F. Cyclic and fatigue behaviour of rock materials: review, interpretation and research perspectives [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 391–414. DOI: 10.1007/s00603-017-1337-5.
    [21]
    夏开文, 王帅, 徐颖, 等. 深部岩石动力学实验研究进展 [J]. 岩石力学与工程学报, 2021, 40(3): 448–475. DOI: 10.13722/j.cnki.jrme.2020.0343.

    XIA K W, WANG S, XU Y, et al. Advances in experimental studies for deep rock dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 448–475. DOI: 10.13722/j.cnki.jrme.2020.0343.
    [22]
    ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
    [23]
    XU P, YANG R S, ZUO J J, et al. Research progress of the fundamental theory and technology of rock blasting [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 705–716. DOI: 10.1007/s12613-022-2464-x.
    [24]
    JU M H, LI X F, LI X, et al. A review of the effects of weak interfaces on crack propagation in rock: from phenomenon to mechanism [J]. Engineering Fracture Mechanics, 2022, 263: 108297. DOI: 10.1016/j.engfracmech.2022.108297.
    [25]
    CAO R H, CAO P, LIN H, et al. Crack initiation, propagation, and failure characteristics of jointed rock or rock-like specimens: a review [J]. Advances in Civil Engineering, 2019, 2019: 6975751. DOI: 10.1155/2019/6975751.
    [26]
    AHMED Z, WANG S H, HASHMI M Z, et al. Causes, characterization, damage models, and constitutive modes for rock damage analysis: a review [J]. Arabian Journal of Geosciences, 2020, 13(16): 806. DOI: 10.1007/s12517-020-05755-3.
    [27]
    JENABIDEHKORDI A. Computational methods for fracture in rock: a review and recent advances [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 273–287. DOI: 10.1007/s11709-018-0459-5.
    [28]
    SARFARAZI V, HAERI H. A review of experimental and numerical investigations about crack propagation [J]. Computers and Concrete, 2016, 18(2): 235–266. DOI: 10.12989/cac.2016.18.2.235.
    [29]
    SHU Y, ZHU Z M, WANG M, et al. A modified JH2 model with improved strength model, damage evolution, and equation of state for rock under impact and blasting loads [J]. Mechanics of Materials, 2022, 174: 104454. DOI: 10.1016/j.mechmat.2022.104454.
    [30]
    SHU Y, ZHU Z M, WANG M, et al. A plastic damage constitutive model for rock-like material focusing on the hydrostatic pressure induced damage and the interaction of tensile and shear damages under impact and blast loads [J]. Computers and Geotechnics, 2022, 150: 104921. DOI: 10.1016/j.compgeo.2022.104921.
    [31]
    WAN D Y, WANG M, ZHU Z M, et al. Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture [J]. International Journal of Mining Science and Technology, 2022, 32(5): 1097–1114. DOI: 10.1016/j.ijmst.2022.08.012.
    [32]
    陈鹏宇. PFC2D模拟裂隙岩石裂纹扩展特征的研究现状 [J]. 工程地质学报, 2018, 26(2): 528–539. DOI: 10.13544/j.cnki.jeg.2017-039.

    CHEN P Y. Research progress on PFC2D simulation of crack propagation characteristics of cracked rock [J]. Journal of Engineering Geology, 2018, 26(2): 528–539. DOI: 10.13544/j.cnki.jeg.2017-039.
    [33]
    HUANG S, XIA K, ZHENG H. Observation of microscopic damage accumulation in brittle solids subjected to dynamic compressive loading [J]. Review of Scientific Instruments, 2013, 84(9): 093903. DOI: 10.1063/1.4821497.
    [34]
    LI J, WANG H C, ZHANG Q B. Progressive damage and fracture of biaxially-confined anisotropic coal under repeated impact loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104979. DOI: 10.1016/j.ijrmms.2021.104979.
    [35]
    XING H Z, XIE F, WANG M Y, et al. Experimental investigation of fracture process zone of rock in dynamic mode Ⅰ fracturing and its effect on dynamic crack initiation toughness [J]. Engineering Fracture Mechanics, 2022, 275: 108828. DOI: 10.1016/j.engfracmech.2022.108828.
    [36]
    张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究 [J]. 岩土力学, 2021, 42(10): 2659–2671. DOI: 10.16285/j.rsm.2021.0339.

    ZHANG Y B, XU Y D, LIU X X, et al. Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT [J]. Rock and Soil Mechanics, 2021, 42(10): 2659–2671. DOI: 10.16285/j.rsm.2021.0339.
    [37]
    GHAMGOSAR M, ERARSLAN N, WILLIAMS D J. Experimental investigation of fracture process zone in rocks damaged under cyclic loadings [J]. Experimental Mechanics, 2017, 57(1): 97–113. DOI: 10.1007/s11340-016-0216-4.
    [38]
    WANG H, GAO Y T, ZHOU Y. Experimental and numerical studies of brittle rock-like specimens with unfilled cross fissures under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103167. DOI: 10.1016/j.tafmec.2021.103167.
    [39]
    YANG S Q, YIN P F, HUANG Y H, et al. Strength, deformability and X-ray micro-CT observations of transversely isotropic composite rock under different confining pressures [J]. Engineering Fracture Mechanics, 2019, 214: 1–20. DOI: 10.1016/j.engfracmech.2019.04.030.
    [40]
    ZHONG Z, HUANG D, SONG Y X, et al. Three-dimensional cracking and coalescence of two spatial-deflection joints in rock-like specimens under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 159: 105196. DOI: 10.1016/j.ijrmms.2022.105196.
    [41]
    王伟, 梁渲钰, 张明涛, 等. 动静组合加载下砂岩破坏机制及裂纹密度试验研究 [J]. 岩土力学, 2021, 42(10): 2647–2658. DOI: 10.16285/j.rsm.2021.0095.

    WANG W, LIANG X Y, ZHANG M T, et al. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2021, 42(10): 2647–2658. DOI: 10.16285/j.rsm.2021.0095.
    [42]
    COHEN A, LEVI-HEVRONI D, FRIDMAN P, et al. In-situ radiography of a split-Hopkinson bar dynamically loaded materials [J]. Journal of Instrumentation, 2019, 14(6): T06008. DOI: 10.1088/1748-0221/14/06/t06008.
    [43]
    PARAB N D, CLAUS B, HUDSPETH M C, et al. Experimental assessment of fracture of individual sand particles at different loading rates [J]. International Journal of Impact Engineering, 2014, 68: 8–14. DOI: 10.1016/j.ijimpeng.2014.01.003.
    [44]
    杨仁树, 李炜煜, 李永亮, 等. 3种岩石动态拉伸力学性能试验与对比分析 [J]. 煤炭学报, 2020, 45(9): 3107–3118. DOI: 10.13225/j.cnki.jccs.2019.0853.

    YANG R S, LI W Y, LI Y L, et al. Comparative analysis on dynamic tensile mechanical properties of three kinds of rocks [J]. Journal of China Coal Society, 2020, 45(9): 3107–3118. DOI: 10.13225/j.cnki.jccs.2019.0853.
    [45]
    GAO G, HUANG S, XIA K, et al. Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests [J]. Experimental Mechanics, 2015, 55(1): 95–104. DOI: 10.1007/s11340-014-9863-5.
    [46]
    ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 423–439. DOI: 10.1016/j.ijrmms.2013.01.005.
    [47]
    YAN Z L, DAI F, ZHU J B, et al. Dynamic cracking behaviors and energy evolution of multi-flawed rocks under static pre-compression [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 5117–5139. DOI: 10.1007/s00603-021-02564-2.
    [48]
    ZHOU T, HAN Z Y, LI D Y, et al. Experimental study of the mechanical and fracture behavior of flawed sandstone subjected to coupled static-repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103161. DOI: 10.1016/j.tafmec.2021.103161.
    [49]
    LIU W, HU C Y, LI L K, et al. Experimental study on dynamic notch fracture toughness of V-notched rock specimens under impact loads [J]. Engineering Fracture Mechanics, 2022, 259: 108109. DOI: 10.1016/j.engfracmech.2021.108109.
    [50]
    XING H Z, ZHANG Q B, RUAN D, et al. Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation [J]. International Journal of Impact Engineering, 2018, 113: 61–72. DOI: 10.1016/j.ijimpeng.2017.11.011.
    [51]
    GAO G, YAO W, XIA K, et al. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method [J]. Engineering Fracture Mechanics, 2015, 138: 146–155. DOI: 10.1016/j.engfracmech.2015.02.021.
    [52]
    JU M H, LI J C, YAO Q L, et al. Rate effect on crack propagation measurement results with crack propagation gauge, digital image correlation, and visual methods [J]. Engineering Fracture Mechanics, 2019, 219: 106537. DOI: 10.1016/j.engfracmech.2019.106537.
    [53]
    李地元, 胡楚维, 朱泉企. 预制裂隙花岗岩动静组合加载力学特性和破坏规律试验研究 [J]. 岩石力学与工程学报, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.

    LI D Y, HU C W, ZHU Q Q. Experimental study on mechanical properties and failure laws of granite with an artificial flaw under coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1081–1093. DOI: 10.13722/j.cnki.jrme.2019.1089.
    [54]
    王奇智, 吴帮标, 刘丰, 等. 预制裂隙类岩石材料板动态压缩破坏试验研究 [J]. 岩石力学与工程学报, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.

    WANG Q Z, WU B B, LIU F, et al. Dynamic failure of manufactured similar rock plate containing a single fissure [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2489–2497. DOI: 10.13722/j.cnki.jrme.2018.0746.
    [55]
    FIELD J E, WALLEY S M, PROUD W G, et al. Review of experimental techniques for high rate deformation and shock studies [J]. International Journal of Impact Engineering, 2004, 30(7): 725–775. DOI: 10.1016/j.ijimpeng.2004.03.005.
    [56]
    RAVI-CHANDAR K. Chapter 8 : crack tip stress and deformation field measurement [M]//RAVI-CHANDAR K. Dynamic Fracture. Oxford: Elsevier, 2004: 107−139. DOI: 10.1016/B978-008044352-2/50008-9.
    [57]
    励争, 苏先基, 傅缤. 水泥石动态断裂韧性的实验研究 [J]. 力学与实践, 1999, 21(1): 41–44. DOI: 10.3969/j.issn.1000-0879.1999.01.013.

    LI Z, SU X J, FU B. Determination of dynamic fracture toughness for cement block [J]. Mechanics and Engineering, 1999, 21(1): 41–44. DOI: 10.3969/j.issn.1000-0879.1999.01.013.
    [58]
    YANG R S, YUE Z W, SUN Z H, et al. Dynamic fracture behavior of rock under impact load using the caustics method [J]. Mining Science and Technology (China), 2009, 19(1): 79–83. DOI: 10.1016/S1674-5264(09)60015-6.
    [59]
    XU P, YANG R S, GUO Y, et al. Investigation of the interaction mechanism of two dynamic propagating cracks under blast loading [J]. Engineering Fracture Mechanics, 2022, 259: 108112. DOI: 10.1016/j.engfracmech.2021.108112.
    [60]
    SALAMI Y, DANO C, HICHER P Y. Infrared thermography of rock fracture [J]. Géotechnique Letters, 2017, 7(1): 36–40. DOI: 10.1680/jgele.16.00131.
    [61]
    LIU J, YANG F, XU X. Experimental on infrared radiation characteristics of high strength concrete during fracturing process [J]. Materials Research Innovations, 2015, 19(S5): 1107–1111. DOI: 10.1179/1432891714Z.0000000001258.
    [62]
    YI W, RAO Q H, LI Z, et al. A new measurement method of crack propagation rate for brittle rock under THMC coupling condition [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1728–1736. DOI: 10.1016/s1003-6326(19)65080-6.
    [63]
    DONG Y Q, ZHU Z M, REN L, et al. Crack dynamic propagation properties and arrest mechanism under impact loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(6): 1171–1184. DOI: 10.1016/j.jrmge.2020.01.008.
    [64]
    GAO W T, ZHU Z M, YING P, et al. Study on dynamic fracture properties of sandstone under the effect of high-temperature using large-scale sample [J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103550. DOI: 10.1016/j.tafmec.2022.103550.
    [65]
    ZHOU L, MA L J, ZHU Z M, et al. Study of the coupling effect of elliptical cavities and cracks on tunnel stability under dynamic loads [J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103502. DOI: 10.1016/j.tafmec.2022.103502.
    [66]
    YING P, ZHU Z M, WANG F, et al. The characteristics of dynamic fracture toughness and energy release rate of rock under impact [J]. Measurement, 2019, 147: 106884. DOI: 10.1016/j.measurement.2019.106884.
    [67]
    GAO W T, ZHU Z M, WANG M, et al. Influence of the interlaced holes on crack propagation behavior under impact loads [J]. International Journal of Impact Engineering, 2022, 163: 104178. DOI: 10.1016/j.ijimpeng.2022.104178.
    [68]
    LOCKNER D. The role of acoustic emission in the study of rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 883–899. DOI: 10.1016/0148-9062(93)90041-B.
    [69]
    YANG J, MU Z L, YANG S Q. Experimental study of acoustic emission multi-parameter information characterizing rock crack development [J]. Engineering Fracture Mechanics, 2020, 232: 107045. DOI: 10.1016/j.engfracmech.2020.107045.
    [70]
    WANG Y Y, DENG H C, DENG Y, et al. Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location [J]. Journal of Petroleum Science and Engineering, 2021, 201: 108420. DOI: 10.1016/j.petrol.2021.108420.
    [71]
    张茹, 谢和平, 刘建锋, 等. 单轴多级加载岩石破坏声发射特性试验研究 [J]. 岩石力学与工程学报, 2006, 25(12): 2584–2588. DOI: 10.3321/j.issn:1000-6915.2006.12.028.

    ZHANG R, XIE H P, LIU J F, et al. Experimental study on acoustic emission characteristics of rock failure under uniaxial multilevel loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2584–2588. DOI: 10.3321/j.issn:1000-6915.2006.12.028.
    [72]
    WANG Z H, LI Y, CAI W B, et al. Crack propagation process and acoustic emission characteristics of rock-like specimens with double parallel flaws under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2021, 114: 102983. DOI: 10.1016/j.tafmec.2021.102983.
    [73]
    SHI Z M, LI J T, WANG J. Effect of creep load on fatigue behavior and acoustic emission characteristics of sandstone containing pre-existing crack during fatigue loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103296. DOI: 10.1016/j.tafmec.2022.103296.
    [74]
    LIU L W, LI H B, LI X F. A state-of-the-art review of mechanical characteristics and cracking processes of pre-cracked rocks under quasi-static compression [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(6): 2034–2057. DOI: 10.1016/j.jrmge.2022.03.013.
    [75]
    ZHANG J Z, ZHOU X P. Fracture process zone (FPZ) in quasi-brittle materials: review and new insights from flawed granite subjected to uniaxial stress [J]. Engineering Fracture Mechanics, 2022, 274: 108795. DOI: 10.1016/j.engfracmech.2022.108795.
    [76]
    LI J, ZHAO J, WANG H C, et al. Fracturing behaviours and AE signatures of anisotropic coal in dynamic Brazilian tests [J]. Engineering Fracture Mechanics, 2021, 252: 107817. DOI: 10.1016/j.engfracmech.2021.107817.
    [77]
    WANG H C, ZHAO J, LI J, et al. Fracturing and AE characteristics of matrix-inclusion rock types under dynamic Brazilian testing [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 157: 105164. DOI: 10.1016/j.ijrmms.2022.105164.
    [78]
    CAI M, KAISER P K, SUORINENI F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8): 907–916. DOI: 10.1016/j.pce.2006.03.007.
    [79]
    KHANDOUZI G, MEMARIAN H, KHOSRAVI M H. Development of a new experimental technique for dynamic fracture toughness measurement of rocks using drop weight test [J]. Joural of Mining and Environment, 2020, 11(3): 909–920. DOI: 10.22044/jme.2020.9818.1903.
    [80]
    SUN B, LIU S, ZENG S, et al. Dynamic characteristics and fractal representations of crack propagation of rock with different fissures under multiple impact loadings [J]. Scientific Reports, 2021, 11(1): 13071. DOI: 10.1038/s41598-021-92277-x.
    [81]
    YANG S L, YUE H, CHEN X L, et al. Experimental study on damage evolution characteristics of coal samples under impact load under different surrounding pressures [J]. Lithosphere, 2022, 2022(Special 11): 1061545. DOI: 10.2113/2022/1061545.
    [82]
    FENG W H, TANG Y C, HE W M, et al. Mode Ⅰ dynamic fracture toughness of rubberised concrete using a drop hammer device and split Hopkinson pressure bar [J]. Journal of Building Engineering, 2022, 48: 103995. DOI: 10.1016/j.jobe.2022.103995.
    [83]
    REDDISH D J, STACE L R, VANICHKOBCHINDA P, et al. Numerical simulation of the dynamic impact breakage testing of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 167–176. DOI: 10.1016/j.ijrmms.2004.06.004.
    [84]
    周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.

    ZHOU L, ZHU Z M, DONG Y Q, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
    [85]
    DONG Y Q, ZHU Z M, YU L Y, et al. Investigation of dynamic fracture in VASCT samples under the effect of different loading modes [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103321. DOI: 10.1016/j.tafmec.2022.103321.
    [86]
    ZHOU L, ZHU Z M, QIU H, et al. Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 25–34. DOI: 10.1016/j.ijrmms.2018.10.011.
    [87]
    周磊, 朱哲明, 董玉清, 等. 动态加载率对巷道内裂纹扩展速度及动态起裂韧度的影响 [J]. 振动与冲击, 2019, 38(4): 129–136. DOI: 10.13465/j.cnki.jvs.2019.04.021.

    ZHOU L, ZHU Z M, DONG Y Q, et al. Effect of dynamic loading rate on crack propagation velocity and dynamic fracture toughness in tunnels [J]. Journal of Vibration and Shock, 2019, 38(4): 129–136. DOI: 10.13465/j.cnki.jvs.2019.04.021.
    [88]
    董玉清, 朱哲明, 王蒙, 等. 中低速冲击载荷作用下SCT岩石试样Ⅰ型裂纹的动态扩展行为 [J]. 中南大学学报(自然科学版), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.

    DONG Y Q, ZHU Z M, WANG M, et al. Mode Ⅰ crack dynamic propagation behavior of SCT specimens under medium-low speed impact load [J]. Journal of Central South University (Science and Technology), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.
    [89]
    WANG X M, ZHU Z M, WANG M, et al. Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts [J]. Engineering Fracture Mechanics, 2017, 181: 52–64. DOI: 10.1016/j.engfracmech.2017.06.024.
    [90]
    LANG L, ZHU Z M, ZHANG X S, et al. Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts [J]. Construction and Building Materials, 2019, 199: 321–334. DOI: 10.1016/j.conbuildmat.2018.12.029.
    [91]
    LANG L, ZHU Z M, DENG S, et al. Study of crack arrest mechanism and dynamic behaviour using arc-bottom specimen under impacts [J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(9): 2040–2054. DOI: 10.1111/ffe.13282.
    [92]
    ZHOU Q, ZHU Z M, WANG X, et al. The effect of a pre-existing crack on a running crack in brittle material under dynamic loads [J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(11): 2544–2557. DOI: 10.1111/ffe.13105.
    [93]
    YANG R S, XU P, YUE Z W, et al. Dynamic fracture analysis of crack-defect interaction for mode Ⅰ running crack using digital dynamic caustics method [J]. Engineering Fracture Mechanics, 2016, 161: 63–75. DOI: 10.1016/j.engfracmech.2016.04.042.
    [94]
    邓帅, 朱哲明, 王磊, 等. 原岩应力对裂纹动态断裂行为的影响规律研究 [J]. 岩石力学与工程学报, 2019, 38(10): 1989–1999. DOI: 10.13722/j.cnki.jrme.2019.0347.

    DENG S, ZHU Z M, WANG L, et al. Study on the influence of in-situ stresses on dynamic fracture behaviors of cracks [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1989–1999. DOI: 10.13722/j.cnki.jrme.2019.0347.
    [95]
    XIA K W, YAO W. Dynamic rock tests using split Hopkinson (Kolsky) bar system: a review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27–59. DOI: 10.1016/j.jrmge.2014.07.008.
    [96]
    HAUSER F E. Techniques for measuring stress-strain relations at high strain rates [J]. Experimental Mechanics, 1966, 6(8): 395–402. DOI: 10.1007/BF02326284.
    [97]
    PERKINS R D, GREEN S J. High speed photography in dynamic materials testing [J]. Review of Scientific Instruments, 1968, 39(8): 1209–1210. DOI: 10.1063/1.1683621.
    [98]
    CHRISTENSEN R J, SWANSON S R, BROWN W S. Split-Hopkinson-bar tests on rock under confining pressure [J]. Experimental Mechanics, 1972, 12(11): 508–513. DOI: 10.1007/BF02320747.
    [99]
    FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics, 2001, 41(1): 40–46. DOI: 10.1007/BF02323102.
    [100]
    SONG B, CHEN W. Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops [J]. Experimental Mechanics, 2004, 44(6): 622–627. DOI: 10.1177/0014485104048911.
    [101]
    LI X B, HONG L, YIN T B, et al. Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure [J]. Journal of Central South University of Technology, 2008, 15(2): 218–223. DOI: 10.1007/s11771-008-0042-7.
    [102]
    LI X B, ZHOU Z L, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.
    [103]
    DAI F, CHEN R, IQBAL M J, et al. Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4): 606–613. DOI: 10.1016/j.ijrmms.2010.04.002.
    [104]
    DAI F, XIA K, ZHENG H, et al. Determination of dynamic rock mode-Ⅰ fracture parameters using cracked chevron notched semi-circular bend specimen [J]. Engineering Fracture Mechanics, 2011, 78(15): 2633–2644. DOI: 10.1016/j.engfracmech.2011.06.022.
    [105]
    CADONI E, ALBERTINI C. Modified Hopkinson bar technologies applied to the high strain rate rock tests [M]//ZHOU Y X, ZHAO J. Advances in Rock Dynamics and Applications. London: CRC Press, 2011: 79–104. DOI: 10.1201/b11077.
    [106]
    方秦, 阮征, 翟超辰, 等. 围压与温度共同作用下盐岩的SHPB实验及数值分析 [J]. 岩石力学与工程学报, 2012, 31(9): 1756–1765.

    FANG Q, RUAN Z, ZHAI C C, et al. Split Hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1756–1765.
    [107]
    王蒙, 朱哲明, 王雄. 冲击荷载作用下的Ⅰ/Ⅱ复合型裂纹扩展规律研究 [J]. 岩石力学与工程学报, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.

    WANG M, ZHU Z M, WANG X. The growth of mixed-mode Ⅰ/Ⅱ crack under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1323–1332. DOI: 10.13722/j.cnki.jrme.2015.1260.
    [108]
    LI J C, RONG L F, LI H B, et al. An SHPB test study on stress wave energy attenuation in jointed rock masses [J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 403–420. DOI: 10.1007/s00603-018-1586-y.
    [109]
    QIU H, ZHU Z M, WANG M, et al. Study on crack dynamic propagation behavior and fracture toughness in rock-mortar interface of concrete [J]. Engineering Fracture Mechanics, 2020, 228: 106798. DOI: 10.1016/j.engfracmech.2019.106798.
    [110]
    邹宝平, 罗战友, 徐付军, 等. 热-水-力耦合条件下深部砂岩冲击动力学特性试验研究 [J]. 岩石力学与工程学报, 2020, 39(9): 1750–1761. DOI: 10.13722/j.cnki.jrme.2020.0205.

    ZOU B P, LUO Z Y, XU F J, et al. Experimental study on impact dynamic characteristics of deep sandstone under thermal-hydraulic-mechanical coupling conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1750–1761. DOI: 10.13722/j.cnki.jrme.2020.0205.
    [111]
    HAN Z Y, LI D Y, ZHOU T, et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104352. DOI: 10.1016/j.ijrmms.2020.104352.
    [112]
    XIE H P, ZHU J B, ZHOU T, et al. Novel three-dimensional rock dynamic tests using the true triaxial electromagnetic Hopkinson bar system [J]. Rock Mechanics and Rock Engineering, 2021, 54(4): 2079–2086. DOI: 10.1007/s00603-020-02344-4.
    [113]
    JIANG Y F, ZHOU L, ZHU Z M, et al. Research on dynamic cracking properties of cracked rock mass under the effect of thermal treatment [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103580. DOI: 10.1016/j.tafmec.2022.103580.
    [114]
    LIU X Y, LIU Y, DAI F, et al. Tensile mechanical behavior and fracture characteristics of sandstone exposed to freeze-thaw treatment and dynamic loading [J]. International Journal of Mechanical Sciences, 2022, 226: 107405. DOI: 10.1016/j.ijmecsci.2022.107405.
    [115]
    WANG L J, FAN L F, DU X L. Non-attenuation behavior of stress wave propagation through a rock mass [J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 3807–3815. DOI: 10.1007/s00603-022-02843-6.
    [116]
    王蒙, 朱哲明, 谢军. 岩石Ⅰ-Ⅱ复合型裂纹动态扩展SHPB实验及数值模拟研究 [J]. 岩石力学与工程学报, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.

    WANG M, ZHU Z M, XIE J. Experimental and numerical studies of the mixed-mode Ⅰ and Ⅱ crack propagation under dynamic loading using SHPB [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2474–2485. DOI: 10.13722/j.cnki.jrme.2015.0010.
    [117]
    WANG M, ZHU Z M, DONG Y Q, et al. Study of mixed-mode Ⅰ/Ⅱ fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics, 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042.
    [118]
    WANG M, WANG F, ZHU Z M, et al. Modelling of crack propagation in rocks under SHPB impacts using a damage method [J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(8): 1699–1710. DOI: 10.1111/ffe.13012.
    [119]
    WANG F, WANG M. Effect of holes on dynamic crack propagation under impact loading [J]. Applied Sciences, 2020, 10(3): 1122. DOI: 10.3390/app10031122.
    [120]
    王兴渝, 朱哲明, 邱豪, 等. 冲击荷载下层理对页岩内裂纹扩展行为影响规律的研究 [J]. 岩石力学与工程学报, 2019, 38(8): 1542–1556. DOI: 10.13722/j.cnki.jrme.2019.0111.

    WANG X Y, ZHU Z M, QIU H, et al. Study of the effect of stratifications on crack propagation behaviors in shale under impacting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1542–1556. DOI: 10.13722/j.cnki.jrme.2019.0111.
    [121]
    WANG X Y, ZHU Z M, ZHOU L, et al. Study on the effects of joints orientation and strength on failure behavior in shale specimen under impact loads [J]. International Journal of Impact Engineering, 2022, 163: 104162. DOI: 10.1016/j.ijimpeng.2022.104162.
    [122]
    QIU H, ZHU Z M, WANG F, et al. Dynamic behavior of a running crack crossing mortar-rock interface under impacting load [J]. Engineering Fracture Mechanics, 2020, 240: 107202. DOI: 10.1016/j.engfracmech.2020.107202.
    [123]
    LIU K, ZHANG Q B, ZHAO J. Dynamic increase factors of rock strength [C]//LI C, LI X, ZHANG Z X. Rock Dynamics and Applications 3: Proceedings of the 3rd International Confrence on Rock Dynamics and Applications (RocDyn-3). London: CRC Press, 2018: 169−174. DOI: 10.1201/9781351181327.
    [124]
    王伟, 王奇智, 石露, 等. 爆炸荷载下岩石Ⅰ型微裂纹动态扩展研究 [J]. 岩石力学与工程学报, 2014, 33(6): 1194–1202. DOI: 10.13722/j.cnki.jrme.2014.06.013.

    WANG W, WANG Q Z, SHI L, et al. Dynamic extension of mode Ⅰ microcracks of rocks under blasting loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1194–1202. DOI: 10.13722/j.cnki.jrme.2014.06.013.
    [125]
    LIU C Y, YANG J X, YU B. Rock-breaking mechanism and experimental analysis of confined blasting of borehole surrounding rock [J]. International Journal of Mining Science and Technology, 2017, 27(5): 795–801. DOI: 10.1016/j.ijmst.2017.07.016.
    [126]
    HE C L, YANG J, YU Q. Laboratory study on the dynamic response of rock under blast loading with active confining pressure [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 102: 101–108. DOI: 10.1016/j.ijrmms.2018.01.011.
    [127]
    PENG J Y, ZHANG F P, YAN G L, et al. Experimental study on rock-like materials fragmentation by electric explosion method under high stress condition [J]. Powder Technology, 2019, 356: 750–758. DOI: 10.1016/j.powtec.2019.09.001.
    [128]
    闫广亮, 张凤鹏, 郝红泽, 等. 电爆炸破碎岩石类脆性材料实验方法与应用 [J]. 煤炭学报, 2021, 46(10): 3203–3211. DOI: 10.13225/j.cnki.jccs.2020.1397.

    YAN G L, ZHANG F P, HAO H Z, et al. Experimental method and application of electrical explosion for breaking rock-like brittle materials [J]. Journal of China Coal Society, 2021, 46(10): 3203–3211. DOI: 10.13225/j.cnki.jccs.2020.1397.
    [129]
    LI M, ZHU Z M, LIU R F, et al. Study of the effect of empty holes on propagating cracks under blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 186–194. DOI: 10.1016/j.ijrmms.2018.01.043.
    [130]
    LIU R F, ZHU Z M, LI Y X, et al. Study of rock dynamic fracture toughness and crack propagation parameters of four brittle materials under blasting [J]. Engineering Fracture Mechanics, 2020, 225: 106460. DOI: 10.1016/j.engfracmech.2019.04.034.
    [131]
    WAN D Y, ZHU Z M, LIU R F, et al. Measuring method of dynamic fracture toughness of mode Ⅰ crack under blasting using a rectangle specimen with a crack and edge notches [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104104. DOI: 10.1016/j.ijrmms.2019.104104.
    [132]
    李盟, 朱哲明, 刘瑞峰, 等. 孔洞对爆生裂纹动态扩展行为影响研究 [J]. 岩土工程学报, 2018, 40(12): 2191–2199. DOI: 10.11779/CJGE201812005.

    LI M, ZHU Z M, LIU R F, et al. Influences of holes on dynamic propagation behaviors of blasting cracks [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2191–2199. DOI: 10.11779/CJGE201812005.
    [133]
    QIU P, YUE Z W, YANG R S. Experimental study on mode-Ⅰ and mixed-mode crack propagation under tangentially incident P waves, S waves and reflected waves in blasts [J]. Engineering Fracture Mechanics, 2021, 247: 107664. DOI: 10.1016/j.engfracmech.2021.107664.
    [134]
    CHEN C, YANG R S, XU P, et al. Experimental study on the interaction between oblique incident blast stress wave and static crack by dynamic photoelasticity [J]. Optics and Lasers in Engineering, 2022, 148: 106764. DOI: 10.1016/j.optlaseng.2021.106764.
    [135]
    QIU P, YUE Z W, YANG R S, et al. Modified mixed-mode caustics interpretation to study a running crack subjected to obliquely incident blast stress waves [J]. International Journal of Impact Engineering, 2021, 150: 103821. DOI: 10.1016/j.ijimpeng.2021.103821.
    [136]
    YUE Z W, QIU P, YANG R S, et al. Stress analysis of the interaction of a running crack and blasting waves by caustics method [J]. Engineering Fracture Mechanics, 2017, 184: 339–351. DOI: 10.1016/j.engfracmech.2017.08.037.
    [137]
    QIU P, YUE Z W, YANG R S, et al. Effects of vertical and horizontal reflected blast stress waves on running cracks by caustics method [J]. Engineering Fracture Mechanics, 2019, 212: 164–179. DOI: 10.1016/j.engfracmech.2019.03.018.
    [138]
    XU P, YANG R S, GUO Y, et al. Investigation of the effect of the blast waves on the opposite propagating crack [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104818. DOI: 10.1016/j.ijrmms.2021.104818.
    [139]
    刘瑞峰, 朱哲明, 刘邦, 等. 爆炸载荷下砂岩动态断裂特性的试验研究 [J]. 岩石力学与工程学报, 2019, 38(3): 445–454. DOI: 10.13722/j.cnki.jrme.2018.1066.

    LIU R F, ZHU Z M, LIU B, et al. Experimental study on dynamic fracture characteristics of sandstones under blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 445–454. DOI: 10.13722/j.cnki.jrme.2018.1066.
    [140]
    LIU R F, ZHU Z M, LI M, et al. Study on dynamic fracture behavior of mode Ⅰ crack under blasting loads [J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 47–57. DOI: 10.1016/j.soildyn.2018.11.009.
    [141]
    XU P, YANG R S, GUO Y, et al. Investigation of the blast-induced crack propagation behavior in a material containing an unfilled joint [J]. Applied Sciences, 2020, 10(13): 4419. DOI: 10.3390/app10134419.
    [142]
    GAO J L, KEDIR N, HERNANDEZ J A, et al. Dynamic failure of composite strips under reverse ballistic impact [J]. International Journal of Mechanical Sciences, 2022, 234: 107700. DOI: 10.1016/j.ijmecsci.2022.107700.
    [143]
    GAO J L, KEDIR N, HERNANDEZ J A, et al. Dynamic fracture of glass fiber-reinforced ductile polymer matrix composites and loading rate effect [J]. Composites Part B: Engineering, 2022, 235: 109754. DOI: 10.1016/j.compositesb.2022.109754.
    [144]
    GAO J L, FEZZAA K, CHEN W N. Multiscale dynamic experiments on fiber-reinforced composites with damage assessment using high-speed synchrotron X-ray phase-contrast imaging [J]. NDT & E International, 2022, 129: 102636. DOI: 10.1016/j.ndteint.2022.102636.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(2)

    Article Metrics

    Article views (430) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return